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Abstract– Application of the nonlinear H∞ identification method to identify a synchronous 
generator model is investigated in this paper. The linear H∞ identification method has been well 
established in the literature for robust modeling despite noise and system uncertainities. Since 
many practical systems such as synchronous generators are nonlinear, linear models identified for 
particular operating conditions do not perform well for other operating conditions. To overcome 
this shortcoming, the linear H∞ identification method has been modified to cover some 
nonlinearities of the systems such as saturation in synchronous machines. The derived proposed 
algorithm is then applied to a seventh order nonlinear model of a synchronous machine with 
saturation effect . In this study, the field voltage is considered as the input and the active output 
power and the terminal voltage are considered as the outputs of the synchronous machine. 
Simulation results show good accuracy of the identified models.           
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1. INTRODUCTION 
 

As interconnected power systems have become increasingly more complex, accurate modeling and 
simulation of the systems have become more essential. Synchronous machines play a very important role 
in the stability of power systems. A proper model for synchronous machines is essential for a valid 
analysis of stability and dynamic performance.  Almost three quarters of a century after the first 
publications in this area [1-2], the subject is still a challenging and attractive research topic. As the 
computational capability continues to grow, many advanced control strategies have been suggested for 
synchronous generators to improve system stability.  The studies and ever-increasing size and complexity 
of power systems show the need for more accurate models of synchronous machines [3].   

The traditional methods of modeling the synchronous machines are well specified in IEEE Standard 
115 [4]. These methods assume a known structure for the synchronous machine, using well-established 
theories like Park’s transformation [5]. They address the problem of finding the parameters of a structure 
assumed to be known. Usually the procedures involve difficult and time-consuming tests. These 
approaches include short-circuit tests, standstill frequency response (SSFR) and open circuit frequency 
response (OCFR) tests. These tests can mainly be carried out when the machine is not in service. The 
approach is classified as white box modeling in this paper. 

The main problem with the white-box modeling is that the parameters are determined individually 
using off-line tests. There are errors when these parameters are used collectively to simulate a 
synchronous generator working online. The errors may come from the fact that the assumed well-known 
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structures may not accurately model the system at all operating conditions. To overcome this source of 
error, different structures for synchronous machines, other than the traditional dq-axis model, have been 
tried [6,7]. 

To overcome the drawbacks of the white-box modeling, identification methods based on on-line 
measurements have gained attention during recent years [8-21]. These methods can be divided into two 
categories which are classified as grey and black-box modeling in this paper.  

Grey-box modeling [8-11], assumes a known structure for the synchronous machine, as the traditional 
methods. Then, physical parameters are estimated from on-line measurements. Although there has been 
some success in estimating the physical parameters from on-line measurements, the problem of wide 
ranges of acceptable parameters has arisen [12-13]. The main reason is that the measured on-line variables 
are not rich enough to adequately reflect the effect of each parameter, particularly when a high order 
structure for the system is considered [13]. The other problem with grey-box modeling is that the physical 
parameters of synchronous machines change with the operating conditons [14-16], mainly due to 
saturation effects and nonlinearities. 

Due to the problems associated with white and grey-box modeling approaches, black-box modeling 
for the identification of machines has been proposed [17-20]. In black-box modeling, the structure of the 
model is not assumed to be known a priori. The only concern is to map the input data set to the output data 
set. A recent review of different nonlinear identification techniques is given in [17]. Wavelets [18], Neural 
networks [19-20], and Volterra series [21] are among many approaches developed for the identification of 
synchronous generators.  

In this paper, the aim is to identify a nonlinear black-box model for a synchronous machine. Such a 
black-box model can be used for system analysis and controller design, especially the design of a power 
system stabilizer (PSS) [22]. The model can be used either in a predictive control structure for an on-line 
design, or as a simulator to test an off-line design. 

One of the main problems associated with grey-box modeling and black-box modeling (which needs 
an experiment) is the measurement noise and model uncertainties. To overcome these problems for linear 
autoregresive (ARX) models, the H∞ identification method has been proposed [23]. Synchronous 
generators, however, are highly nonlinear systems. To develop a robust identification method for such a 
nonlinear system, in the presence of measurement noise and model uncertainities, the H∞ identification 
method is first generalized to cover the nonlinearities of the system. Then the developed method is applied 
to identify the synchronous generator. 

The identification method and the nonlinear model of the system used in this paper are described in  
Sections II and III, respectively. The system input-output data used for model identification is presented in 
Section IV and the method is applied to a simulated nonlinear model of a synchronous generator. Section 
V concludes the paper. Some parameters of the synchronous machine have been defined in the Appendix. 
 

2. IDENTIFICATION METHOD 
 
The method described here is a generalization of the linear time-domain H∞ identification method 
proposed in [23]. In [23] a linear discrete-time system is represented by: 
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Here, a robust identification method is developed to estimate the parameters of the above model in a 

noisy environment.  
The system under study in this paper is a synchronous generator, which  is a highly nonlinear system. 
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The nonlinearities of the system are due to the sine and cosine functions in the state equations and the 
saturation effect; therefore, the linear model parameters would change dramatically with change in the 
operating conditons (as proved by our studies). To overcome this shortcoming, the idea of Taylor series, 
by which all nonlinearities such as saturation, … can be modeled, is used in this paper. The linear 
regression model of (1) was generalized to the nonlinear one of (2) in this paper: 
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where { }kia  and { }kib  are the model parameters to be identified, uk is the input, kω  is the unknown driving 
disturbance, yk is the measured output , zk is the unknown real output and  vk  is the measurement noise 
( kkk vzy += ).  

In (2), n is the order of the system and N is the number of nonlinear terms. A larger N results in better 
approximation of nonlinearities, but would increase the model complexity. If N=1 is selected, as in [23], a 
linear ARX model is obtained. 

To identify the parameters, the above system structure can be written as: 
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The predictive model is defined as: 
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where kẑ  is the best estimate of kz . To solve the estimation problem, the following estimation algorithm 
has been suggested and the stability of the algorithm, under certain conditions, has been proven in [23]: 
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In the above estimator, kG  is unknown. The following formulas are used to estimate the vector: 
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In the above equation, γ  is the disturbance rejection factor and it should be selected as small as possible. 
On the other hand, it should be large enough to guarantee the convergence of the algorithm. 

The next step is to assume that there is a nominal vector of parameters, θ ,  and a given constant 
0>M  such that: 

 
( ) ( ) MCC kkk ≤− θθ  

Define 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

−−=
−

−−
−

−−

t
kk

k

t
kt

k
t

kt
k

k

t
k

t
kk

t
kkkk

GG
G

AQ
MAQAQ

AQ

G
M

AQGGAQ

ˆˆ
ˆ

ˆ

ˆˆˆˆ

1

11 δδδ

                                  (10) 

 
 

( ) ( ) { } ( )θσδδδθθδ t
kk

t
kkk

t
kkkkkk

t
kk

t
kk CQMQMQQCCQ ~2ˆˆˆˆ~ˆ~ˆ 12111 −−−−− ++++=Δ              (11) 

 
σ denotes the maximum singular value. 
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where ( ) ( )kkk

t
k CC θθδ ˆ~~ˆ −= . It is shown in [23] that the algorithm converges if and only if kQ  is positive 

definite and 
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where DGBg kk −=~ . 
 
Using this approach, the identification method is summarized below: 

a) Select a proper input signal to be applied to the system. The input signal should have a wide 
spectrum to cover all system dynamics. It should also have a proper magnitude. The magnitude 
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should be large enough to cover the non-linearities and also should be small enough to be safe to 
perform the test. 

b) Select a proper sampling time and final time (the total time for the experiment). 
c) Apply the selected input signal (item a) to the system and sample the input-output data by a data 

acquisition system. 
d) Select the order of the model (n) and the number of the terms (N) in (2). Although the real values 

for n and N could be very high, if a lower order can capture the required dynamics, the higher order 
is not preferred. In particular, for real-time control applications, a low order model, generally n=3, 
is sufficient. 

e) Select proper values for γ  and M. The smaller value of γ  means better disturbance rejection. The 
smallest value of γ  is selected by trial and error, such that the condition in (13) is met and kQ  
remains positive definite. 

f) Estimate the initial seed of vector t
0θ , ( ni,Nkb,a kiki LL 11 ==− ), in (4) using least squares, 

as used in this paper, or any other identification algorithm developed for linear systems [17]. The 
nominal vector of parameters, θ , is the same as 0θ . 

g) Establish A, B, ( )00 θC  and D matrices. 
h) Update kĜ  using (8) and calculate the other vectors given by (9)-(12) for the next iteration . 
i) Update the estimated parameters 1

ˆ
+kθ  using (7) and use the estimated value of kG  obtained in the 

previous step. 
j) With the new estimated parameters, form the output ( )kŷ  using ( ) kkkk Cy θθ ˆˆˆ =   and compare 

with the measured values. 
k) Go to step (h) and update the parameters, unless the parameters are converged. 

 
The main advantage of the above algorithm is its ability to find a robust model despite noise and system 
uncertainties. Moreover, the algorithm can model the system nonlinearities and can be used for nonlinear 
systems modeling. The disadvatage of the proposed method is its relatively complicated procedure which 
makes it difficult to implement, compared with similar algorithms. 
 

3. STUDY SYSTEM 
 
A synchronous machine connected to an infinite bus through a transmission line, Fig. 1, is considered as 
the study system.  
 

 
 

Fig. 1. Structure of the study system 
 

The nonlinear structure of synchronous generators derived in [24-25] is used to model the system. 
The model is described by (14) through (16). 
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The rotor dynamics is described by 
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where eT , electrical torque, is usually approximated by electrical power ( eP ) when the system is 
connected to infinite bus (which means 0ωω ≅  ) [24-25], i.e.: 
 

qqddee ivivPT .. +=≅                                                                  (16) 
 

In this paper, to consider the practical aspects, only the field voltage is considered as the system input 
and the mechanical input is considered to be constant. The field voltage is an electric signal and can be 
disturbed and measured more easily than the mechanical torque [10-11]. 

To show the strength of the identification method in a more challenging problem, the saturation effect 
was also considered in the model. 

The first step towards the representation of saturation is to introduce the saturation factors ( sqsd KK , ) as 
[24]: 
 

mqusqmqmdusdmd x.Kx,x.Kx ==                                                            (17)  
where: 

mqumdu xx , : unsaturated values of mqmd xx ,  

sqsd KK ,  depend on the operating conditions. They are calculated using the open circuit saturation curve 

(OCC). For 
vV

VK
at

at
sd Δ+
= , atV  is the air-gap voltage and can be calculated by: 

 
ijxvV ltat .+=                                                                       (18)  

 
Δv depends on the operating conditions. To model such a dependence, the most used formula is 
 

)Vv(B TtAev 1−=Δ                                                                      (19)  
 
where A,B and 1TV  are proper constants which are obtained using the OCC curve. 
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For salient pole machines, mqx does not vary significantly with saturation. Therefore, sqK  can be assumed 
to be equal to one for all loading conditions. For round rotors, however, sdsq KK = is assumed. For 
further treatment of saturation effects refer to [24]. 

All variables and constants are defined in the Appendix.  
This model is used in the simulation studies described in this paper for the identification of the 
synchronous machine model.  
 

4. SIMULATION RESULTS 
 
To illustrate the proposed identification method, a PRBS (Psuedo Random Binary Sequence) signal is 
applied to the field voltage and the electric power, terminal voltage and field voltage are sampled. The 
sampling time was selected to be 1 ms. The input/output data collected from the system model, shown in 
Fig. 2, is used for the identification procedure. This data is for the operating conditions  
 

P=0.9  p.u.,     Q=0.0 p.u.    and tv =1.05 p.u. 
 

The identification method described in Section 2 is used to identify a synchronous machine simulated 
using the seventh order nonlinear model with saturation described in Section 3. 

Using the first 350 samples and least squares identification method [17], the parameters of the 
equivalent linear model were estimated and used for t

0θ . The parameters ( ,n,N ,Mγ ) in the identification 
method were selected as 7=γ , 3=n , 2=N  and 1.0=M . These values were selected by trial and error to 
give a robust identification. In this study, the input is the sampled field voltage ( fv ) and the outputs are 
the sampled active power (P) or terminal voltage ( tv ), one at a time.  

Identification results with the identified model and the measured variables, Fig. 2, are shown in Fig. 3. 
It can be seen that the proposed method is very successful in identifying the system dynamics. Since the 
system output and the model output are not distinguishable in Fig. 3, the error signals are shown in Fig. 4.  

 
Fig. 2. Data collected from the seventh order nonlinear synchronous generator model   

To show that the identified model has successfully covered the main non-linearities of the system, 
more studies were carried out. A comparison of the performance of the identified model and the system at 

05.1;1.0;1.1 === tvpuQpuP pu is shown in Fig. 5 and the corresponding error signals are shown in Fig. 6. 
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Figure 6 shows that the identified model has modeled the system correctly. Additional studies, as 
expected, showed better performance when the operating conditions were not changed very much from the 
original operating conditions (at which the identification has been carried out), or when the identification 
algorithm is on and updates the parameters as the operating conditons change.  

 
Fig. 3. Identification results with the identified model and the measured  

variables, Fig. 2, at 05.1;0;9.0 === tvQP pu 

 
Fig. 4. Error signals of Fig. 3 

 
Fig. 5. Identification results with the identified model and the nonlinear  

   synchronous model at 05.1;1.0;1.1 === tvpuQpuP pu 
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Fig. 6. Error signals of Fig. 5 

 
In Table I, some of  the parameters value obtained from both operating points are given. As shown in 

the Table, the parameters of the model do not change much with the change in operating conditions 
(although the saturation effects and nonlinear terms are presented in the simulation). This shows the 
structure proposed in this paper, by (2), can cover system nonlinearities quite accurately.   

With the identifier working continuously, the performance of the identified model in response to 
changes in terminal voltage and power output are shown in Fig 7. In this study, the system is subjected to 
a relatively large change of operating conditions and the estimator updates the parameters as the operating 
conditons of the system change. The errors are shown in Fig. 8. 
 

 
Fig. 7. Identification results with the identified model and the nonlinear  

       synchronous model while the identifiation algorithm is on 
 

To show the importance of the nonlinear terms in the model, a linear model has been identified at one 
operating condition and evaluated at another. The linear model identified for an operating point performs 
well at the same operating condition, but when the model is verified at another operating condition, the 
result is not good. Fig. 9 shows the result of identifying a linear model at 05.1;0;9.0 === tvQP , but 
evaluating at 05.1;1.0;1.1 === tvpuQpuP . As the figure shows, a linear model is not valid if the operating 
conditions are changed. Comparing Fig. 9 with that of Fig. 5 the significance of nonlinear terms in 
modeling the outputs is quite clear. 
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Fig. 8. Error signals of Fig. 7 

 
Table 1. Some parameters of the identified model in (2) 

 
Modeling active power 

 
11a  12a  11b  12b  1v  

1st OP .6568 -.1165 -10.116 17.713 .313e-4 

2nd OP .6481 -.1154 -10.606 17.577 .299e-4 

Modeling terminal voltage 
 

11a  12a  11b  12b  1v  
1st  OP .6407 -.1146 -11.44 17.218 .399e-4 

2nd OP .6416 -.1143 -11.55 17.218 .371e-4 
                                                     
                                             * OP stands for the operating point 
 

 
Fig. 9. Identification results with the identified model and the linear 

        synchronous model at 05.1;1.0;1.1 === tvpuQpuP pu 

5. CONCLUSION 
 
Nonlinear identification of a synchronous generator using the nonlinear H∞ identification method is 
described in this paper. The proposed method is classified as black-box modeling. In this paper, the 
algorithm was first modified to cover the nonlinearities of nonlinear systems such as saturation effects in 
synchronous generators. The proposed method has been tested on a 7th order nonlinear simulated model of 
synchronous machines. 
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Simulation results show that the proposed method can be used successfully for the identification of a 
nonlinear synchronous machine model. The obtained black-box model can be used for system analysis and 
for designing a power system stabilizer (PSS) in a predictive on-line control structure.   

The proposed method requires only a small perturbation of the field voltage, and all required signals 
are easily measurable. Based on this, it seems feasible of application for the identification of a large range 
of synchronous machines.  
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APPENDIX 
 
The main variables and constants of (14) are: 
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laqqladd xxxxxx +=+ ,  

J , D     rotor inertia and damping factor 

lx        stator leakage reactance 

mdx , mqx   direct and quadratic axis mutual reactances  

dx′      direct transient reactance 

ex , er      line and transformer reactance and resistance 
δ      rotor angle 
ω     rotor speed 
Tm     mechanical input torque  
P ,Q     terminal active and reactive power per phase 

tv      terminal voltage 

Bv      infinite bus voltage 

fi , fv      field current and voltage 

fr , fx      field resistance and reactance 

DΨ ,
QΨ      direct and quadrature axis damper winding fluxes 

dΨ , qΨ      direct and quadrature axis stator fluxes 

fΨ      field winding flux  

Di , Qi      direct and quadrature axis damper currents 

Dv , Qv      direct and quadrature axis damper voltages 

Dr , Qr      direct and quadrature axis damper resistances 

Dx , Qx      direct and quadrature axis damper reactances  
  


