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Abstract– Modeling is one of the most interesting areas in various fields of science. Unfortunately 

data quality, which has an important role in the modeling, is not considered. In fact, most often 

processes encounter disturbances which results in the collection of abnormal data and may lead to 

a model different from the real behavior of the process. On the other hand, most of real industrial 

processes are time varying and developing on-line models to capture the variations of the process 

is very appealing. High capability of intelligent models has attracted considerable attention. 

Therefore, on-line intelligent models can effectively characterize both time invariant and time 

varying processes. Current on-line modeling techniques adapt the primarily identified process 

model with the new changes in time varying processes without consideration of abnormal 

situations. This will affect the model. To overcome this problem, this paper proposes to combine 

process monitoring techniques with modeling approaches. Although the proposed approach is not 

restricted to a specific process monitoring or modeling approach, wave-net on-line techniques and 

recursive principal component analysis (RPCA) methods are invoked. A double continuously 

stirred tank reactor (CSTR) is considered as a case study. The results show the effectiveness of the 

proposed approach.            
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1. INTRODUCTION 
 

Most real processes are time varying. Therefore, changes of the process dynamics affect the parameters of 

the process model and the model performance. This fact leads to the need for improving the model with 

continuous stream of data. On-line model improvement techniques address this issue. On the other hand, it 

is possible that an abnormal condition occurs in the process for a short time interval and the model is 

consequently reformed based on abnormal data. Though several papers address the time varying nature of 

some processes and the need to improve the model, and some address how to detect abnormal conditions 

of processes [1-12], not many papers address the need to consider these techniques simultaneously and the 

result of ignoring this issue. The main objective of this paper is to improve process models by considering 

quality of the invoked data. This will be done with a focus on a special class of intelligent models. 

Intelligent models have attracted a great deal of attention in recent years in various areas of science 

and technology. While Neural Networks (NNs) [13, 14] are one of the most well known and powerful 

tools to develop intelligent models, they suffer from the lack of a rigorous mathematical framework and 

also from major trial and error steps in the design phase. Wave-net is a mathematical framework for a 

class of NNs based on wavelets and multi-resolution analysis suggested by Bakhshi and Stephanopolous 

in 1993 [13, 15] to overcome drawbacks of NNs. Further research and improvements on wave-net 
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structures were performed by Safavi and Romagnoli [14]. Three wavelet learning algorithms were then 

discussed in [16]. Extensions to on-line wave-net learning methodologies when detecting any changes 

within the process are presented in [17]. Nevertheless, no discussion is made in [17] on how to deal with 

quality of the data for on-line model improvement.  

This brings us to another line of research, the so-called statistical process control (SPC) [18] or 

multivariate statistical process monitoring approaches (e.g.  [19]). The basic philosophy of multivariate 

statistical approaches is that the behavior of the process is characterized using data obtained when the 

process is operating well. Subsequently, future unusual events and possible abnormalities in the new data 

are detected by referencing the measured process behavior against the available ―in control‖ model. 

Relying on the nominal historical data, standard Principal Component Analysis (PCA) is a multivariate 

statistical method that models the linear correlation structure of a multivariate process. A major limitation 

of monitoring based on standard PCA is the assumptions of normal distribution and stationary variables 

and observations with no auto-correlation. Besides, the standard PCA is basically a linear static model 

while in dynamic systems current observations of variables are dependent on the previous observations of 

those variables. Therefore, Dynamic PCA (DPCA) is suggested for dynamic systems [20, 21]. However, it 

should be noted that standard PCA and DPCA models which are built from historical data are time-

invariant while most real industrial processes are time-varying. When a time-invariant model is used to 

monitor time varying processes, normal changes are interpreted as false alarms. Therefore, adaptive 

process monitoring approaches are proposed to deal with the time-varying process conditions [22]. Li et 

al., demonstrate that their approach can deal with time varying process behavior by adapting the linear 

relationships between the process variables [23]. 

In this paper, an on-line learning method in conjunction with on-line monitoring is proposed to 

improve the performance of the updated model. Here, based on on-line monitoring approaches, first, 

normal variations of the process from its abnormal variations are distinguished, then the process model is 

only updated based on normal variations.     

The rest of this paper is structured as follows. In Section 2, wavelets and wave-net design are briefly 

discussed. In Section 3, on-line wave-net algorithms are presented. Section 4 presents process monitoring 

with recursive principal component analysis (RPCA). The on-line learning based on on-line monitoring 

approach is proposed in Section 5. A case study is illustrated in Section 6 to demonstrate the performance 

of the proposed approach. Simulation results are presented in Section 7. Section 8 presents the concluding 

remarks.  

 

2. THE WAVE-NET DESIGN 

Wave-nets [13, 14, 16] are defined as hierarchical multiresolution neural networks with one hidden layer 

of nodes and localized learning, whose basis functions are drawn from a family of wavelets. The primary 

difference of wave-nets to other regression methods is the use of multiresolution analysis that expands 

hierarchically with the wavelet basis functions according to a specified norm [17]. Wavelets are usually 

introduced in the multiresolution framework developed by Mallat [14, 15]. In this framework any
 

)()( 2 RLxF   can be expressed as linear combinations of orthogonal wavelets  km,  as shown below. 

)()( ,, xdxF
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Where m  and k  correspond respectively to the dilation and translation factors of the wavelets and 2 2
-m

 is 

an energy normalization factor. If one starts from a particular resolution, for instance m =0, (1) can be re-

expressed as  

.)()(
0

m

km,km,

k

k0,k0,  











k

dxaxF                                              (3) 

Where  km,  is the scaling function and is defined as (see [13, 17]) 

z.km,kxm-m
m,k   )2(2 2                                                            (4) 

Equation (3) is the basic framework of wave-nets. In fact, by incorporating the basis functions at a 

particular resolution, namely resolution m =0 here, the first approximation of the desired function is 

obtained. A wave-net is presented with a set of input-output pairs as training data and then it learns the 

mapping between the input-output pairs at multiple resolutions [14]. 




i
i0,i xaxF )()( ,00                                                               (5) 

Then, by including the wavelets of the same resolution, a finer approximation is provided: 

zjxaFxF

j

j0,j  




 ,)()( ,001                                                         (6) 

In general, a finer approximation of )(xF  is obtained by adding wavelets of a higher resolution to a 

current approximation: 






 

j

jm,jmmm xaFxF )()( ,1                                                          (7) 

 

3. CURRENT ON-LINE LEARNING APPROACHES FOR WAVE-NETS 

Wave-net learning is the process of finding the network coefficient kma ,  and
 kmd , . Three learning 

methods (the Direct Inner Product, L2  
learning algorithm and L  

learning algorithm) are presented in 

[16]. Real processes are dynamic and time-varying. On-line wave-net learning [17] is proposed to capture 

the changes of the process and reflect it to the primary model. Therefore, primary model adapts itself 

based on the incoming data. Three methods including 2L  Learning-Algorithm with 2L  or L  Error-

Threshold, L  Learning-Algorithm with L  Error-Threshold and Lyapunov approach are proposed in 

[17] for on-line wave-net learning. In this paper, L2  learning algorithm with 2L  Error-Threshold and 

Lyapunov approach will be discussed. 

a) 2L  Learning–algorithm with 2L  error-threshold  

In this approach, in the first step a process model is estimated based on 2L learning algorithm. 

Second, mean square error between (MSE) model and process data is calculated and based on the nature 

of the process an appropriate 2L  
Error-Threshold is selected. At the third step, locations of the wavelets 

which support the approximation error are determined. Wherever error occurred, wavelets are retrained 

with the new incoming data at the same resolution (wavelet coefficients are changed). If error still exists, 

one can either retrain one lower resolution or train one higher resolution to improve the model. In the 

higher resolution direction, more detail and high frequency characteristics of the process will be captured. 

Finally, if all of these do not lead to satisfactory results, retraining the whole model is the last choice. 
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b) Lyapunov approach 

Regardless of the learning-algorithms used, applying the error threshold as 2L  norm or L  norm 

requires an available set of data since these norms are defined on a set of data and not on a single point or 

pair of data. But, the following approach which is based on Lyapunov theory improves the model by 

utilizing each single point of data. 

Consider a multi-input multi-state system as follows:  

),( uxfdtdx  , 0)0( xx  , Ru r , Rx d                                             (8) 

As mentioned above, ),( uxf can be approximated by 
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where drnRBA
ni

jkj0k  ,, )( . 

Equation (8) is a more general form than (3) because of using multi-dimensional wavelets [14]. It is 

proved [24, 25] that the coefficients should be updated as shown below 

),( uxPe
dt

Ad

j0k
T
xj0

j0k
                                                         (10)  

),( uxψPe
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(i)
jk

T
xj

i
jk

                                                             (11) 

Where 0j and j are positive constants acting as adaptive rates [24], P is a positive-definite matrix that 

satisfies Lyapunov equation [25]. xe ( xxex ˆ ) is the difference between the true state x and 

approximated state x̂ . 

 

4. PROCESS MONITORING WITH RECURSIVE  

PRINCIPAL COMPONENT ANALYSIS 

While standard PCA is the basic block of the most commonly used monitoring approaches, the majority of 

industrial processes have a naturally time varying behavior and standard PCA model wrongly interprets 

these behaviors as faults. Existence of a recursive process monitoring method can improve performance of 

fault detection techniques. On this basis, Li et al [22] proposed recursive principal component analysis 

(RPCA) to deal with this problem. Li et al proposed three methods, rank-one modification, lanczos 

tridiagonalization, and standard singular value decompositions (SVD) for RPCA calculation. In this paper, 

standard SVD will be used. In the RPCA, first a block mn
RX


 10

1  of nominal data is used to construct a 

primary PCA model in the off-line monitoring phase. 1n  is the number of observations and m  is the 

number of variables, including inputs and outputs of the process. This block is converted to 1X  with zero 

mean and unit variance through the following equation, 

  1
11

0
11 1

1  T
n bXX  
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1
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0
1

1
1

1
n

T
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n
b   

)( .11.11 mdiag    

where 1b is the mean of 0
1X and 1 consists of m.11.1   which are standard deviations of m variables 

of 0
1X . Correlation matrix is obtained by 
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In on-line monitoring phase, at each step 1K , PCA model is updated by augmenting incoming block or 

sample of data to the matrix of data at step K . It means that, if 
1

0
knX  is the block that comes at step 1K , 

this block is augmented with the block that is collected at step K ( 0
kX ). Augmented signal at step 

1K is 0
1kX , 
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Then mean, variance, and correlation matrix are updated and 0
1kX  is scaled to zero mean and unit 

variance using updated mean and variance and becomes 1kX .  

In the presented RPCA in [22], it is possible to update mean and variance and correlation matrix by 

an incoming vector ( 0
1kx ) only, which contains one sample of each variable, instead of a block of data 

(
1

0
knX ) at each step.  

The next step in RPCA is the calculation of loading vectors. By applying standard SVD on 

correlation matrix, eigenvectors are extracted first, and then number of significant PCs and loading vectors 

are obtained through current methods. For more details on these approaches see [22]. In this paper, 

cumulative percent variance (i.e. CPV) method is used and the number of PCs is selected so that CPV 

reaches 97%. 
2T and Q  [26-30] are used as statistics for detecting abnormal conditions. It is clear that 

time varying behavior of the process leads to changes in principal components and finally updating of 

mentioned statistics and their thresholds. 

 

5. THE PROPOSED METHOD 

Most of the real processes are time varying and multi-input multi output. In these cases, modeling each of 

the variables of the process, for example )(tF , is not only dependent on the time t , but also is dependent 

on the other variables. Therefore, a time varying model, here wavenet model, cannot efficiently 

characterize that variable without taking the other variables into consideration.    

In the proposed approach, a monitoring technique shows the condition of the operation. 

Data driven monitoring techniques, here RPCA, distinguish this condition based on the collected 

block data. As mentioned before, this block is, for example, 
mnRX  in which n  is the number of 

observations and m  is the number of variables, including inputs and outputs of the process.  

It is clear that, at any time t , 
mnRX   includes )(tF which is one of the variables. 

Therefore, if the collecting data belongs to the normal operating condition, the model update 

procedure will be activated to follow the behavior of )(tF . Otherwise no action will take place until the 

process returns to the normal condition.  

For this purpose, a block of data which is collected in the normal condition of the process, is invoked 

to create a standard PCA model for monitoring purpose. A primary intelligent model of the mentioned 

variable is also constructed. This model is dependent on the time. All of these procedures are done in off-

line phase. Then, in on-line phase, a block of data is collected from the process. This block is first 

projected to the constructed PCA model to distinguish its situation. It means that, if both 2T  and Q  for 

this block is less than 2T  and Q
 
thresholds, which are calculated in off-line phase, that block belongs to 

the normal condition of the process and both of the primary intelligent and primary PCA models will be 

updated, otherwise updating models will be stopped. This procedure will be continued for all of the 

incoming blocks in on-line phase.  

Here, we restrict ourselves to the current on-line wave-net model to demonstrate the applicability of 

the proposed method. In the time varying wave-net model, the primary model of the process is improved 



M. Jafari and A. A. Safavi 

 

IJST, Transactions of Electrical Engineering, Volume 39, Number E1                                                                            June 2015 

106 

based on new variations in the process. Therefore, even when some disturbances or abnormal conditions 

are occurred, on-line learning reflects those changes to the model. In fact, the model would be updated by 

changing wavelet coefficients, or going to higher resolutions or even retraining the whole model for good 

tracking of new training data. This procedure may be time consuming when abnormal conditions occur 

and the newly adapted model may be quite different from the real process. Again, whenever the process 

returns to its normal condition, approximation error is large and the model needs to go to higher 

resolutions or retrain the whole model for tracking new data set in a time consuming procedure.  

It was mentioned in Section 3.b that 2L learning-algorithm is defined on a set of data and not on a 

single point but Lyapunov approach improves the model by utilizing each single point of data. It is also 

considerable that in RPCA algorithm the correlation matrix would also be updated by an incoming block 

(block-wise) or a vector (sample-wise) of variables. Therefore, in this proposed approach sample-wise and 

block-wise RPCA will be applied to Lyapunov approach and 2L learning-algorithm, respectively.  

 

6. THE CASE STUDY 

The multi-input multi-output process considered in this paper consists of two continuously stirred tank 

reactors (CSTRs) in series with an intermediate mixer for the introduction of the second feed. The system 

is time-varying as seen from )(th  and )(tc  below. A single, irreversible, exothermic, first-order 

reaction BA  takes place in each reactor. The independent variables in this system are input 

compositions ( CC F
21 , ), two input flow rates ( QQF

21 , ) and input temperatures ( TT F
21 , ). The outputs of 

this system are reactors’ compositions ( CC 21, ), reactors’ temperatures ( TT 21, ) and mixer’s composition 

and temperature ( TC mm, ). The following equations describe CSTR process. Further description about 

these equations can be seen in [19, 31]. 
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7. SIMULATION AND RESULTS 

In this paper, two different time varying variables, output temperature of the first reactor and output 

composition of the second reactor of a double CSTR, are considered for the implementation of the 

proposed approach. Our explanations and comparisons of the current and proposed approach are based on 

output composition of the second reactor and results of the temperature of the first reactor are presented at 

the end. For this purpose an early wave-net model of the mentioned CSTR is trained with L2  learning 

algorithm at resolution 5m  of 80 samples of normal conditions data. For this model, 1)( tc in 

expressions (12) and (13) and the exponential term in (13) is equal to zero. At normal conditions, inputs 

variations are restricted within 5% of their operating point. Meyer Wavelet [15] is used in the developed 

wave-net model. Figure 1 shows real output composition and it’s approximation by an early wave-net 

model.  
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Fig. 1. Real output composition and its approximation of early wave-net model 

In on-line wave-net learning, two approaches (i.e. 2L learning-algorithm with 2L error-threshold and 

Lyapunov approach) are considered here. In 2L learning-algorithm with 2L error-threshold, 80 samples of 

time-varying process data come into the model in windows of length 2. In Lyapunov approach, the 80 

samples come one by one. Incoming data at the 40
th
 to 60

th
 samples are collected when a disturbance of 

10% of operating point is applied to the input temperature of the first reactor. Other remaining data are 

collected at normal conditions. The following results represent the comparison of the two approaches, 

current on-line wave-net learning and proposed on-line learning based on on-line monitoring.   

a) On-line wave-net learning approach 

In the current on-line wave-net learning approach, early wave-net model is updated based on 

incoming data without considering the possibility of any disturbance when collecting data.  In this 

experiment, 80 samples are used and two mentioned on-line learning methods, 2L learning-algorithm and 

Lyapunov, will update the model based on these data without considering the disturbance that had 

occurred at the 40
th
 to 60

th
 samples. Therefore, the on-line learning methods will point the model toward 

the new data (include both disturbance and variation of the process). At the 61
st
 sample, the disturbance 

has vanished but the variations in the process have continued. Therefore, the on-line learning approach 

again points the model toward these new data. At all these stages the model is forced to update and reach 

the process output. At each stage the update formula should act to push the MSE toward zero. See Figs. 2 

and 3, output after occurrence of disturbance (dash-dot line) and approximated output with the current on-

line wave-net learning method (dash-circle line). 

b) The Proposed on-line learning based on on-line monitoring approach 

1. 2L Learning-Algorithm with 2L Error-Threshold: In this on-line learning based on on-line 

monitoring approach, each block of data consists of 2 samples of variables (i.e. 42
1




RX
kn ) 2T , and Q

 
statistics are computed on-line first. These statistics are compared with 2T  and Q  thresholds which are 

obtained from a primary block of 80 samples of nominal variables (i.e. 480
1

RX ) (See Fig. 4 where  
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circles are 2T  and Q  statistics of  the incoming blocks of data and solid lines show 2T  and Q  statistic 

thresholds) and model is updated only if the incoming data block is in normal condition. If one of the 
2T and Q statistics is more than its threshold, it means that a disturbance has occurred. In our case, as it 

was mentioned before, the blocks that contain data between 40
th
-60

th
 samples are not in normal condition 

and the model will not be updated with them. It must be noticed that at each step, only the samples of one 

column of 
1knX (here samples of output composition of the second reactor) are applied to the wave-net 

model for adaptation.  
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Fig. 2. Output composition approximation based on block-wise adaptation 
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Fig. 3. Output composition approximation based on sample-wise adaptation 
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Fig. 4. 2T  and Q  statistics plot for block-wise RPCA 

Disturbance occuring in the inputs of a process makes the output of the process different from the real 

output. Therefore, the updated model based on uncorrect data may be different from real process behavior. 

In fact, we should avoid the change of the wave-net model based on the abnormal data available as this 

model may be used by a controller or elsewhere. Figure 2 shows the output of the process when no 

disturbance has occurred (dash-dash line), output after disturbance has occurred (dash-dot line), 

approximated output with the current on-line wave-net learning method (dash-circle line), and 

approximated output with 2L learning-algorithm based on on-line monitoring (solid line). As explained 

before, the first approach (current 2L learning-algorithm) updates the model even for data in abnormal 

conditions, but the second approach ( 2L learning-algorithm based on on-line monitoring) updates the 

model only for data in normal conditions. Thus, for the 40
th
-60

th
 samples, before updating the model, as 

the on-line monitoring approach detects the disturbance and abnormal condition, the model is not updated. 

This new approach leads to more efficient models that are near to real system with fewer computation 

loads.  

The whole precedure for final update of the current and the proposed approach takes 19.69 seconds 

and 17.55 seconds, respectively. A Sony laptop, SR Series (JAB), with RAM 4G is used to run the current 

and all of the following simulations in MATLAB2009a. This shows the accuracy and effectiveness of the 

proposed approach. 

2. Lyapunov Approach: In this approach, for each vector of data 41
1


 Rxk , 2T and Q

 
statistics are 

computed on-line. These statistics are compared with 2T  and Q  thresholds which are obtained from an 

initial block of 80 samples of nominal variables, i.e. 480
1

RX . These results are shown in Fig. 5 where 

red circles are 2T  and Q  statistics of  the incoming vectors and solid lines show 2T  and Q  statistic 

thresholds. In on-line learning phase, updating of wave-net model parameters according to the (10) and 

(11) occurs only if the variables of incoming vector are in normal condition. Changes in the threshold of 

nominal condition are due to the variation in the number of significant eigenvalues of correlation matrix 

that is updated sample-wise. If one of the 2T and Q statistics is more than its threshold, it means that a 

disturbance has occurred and adaptation of parameters in (10) and (11) must stop. Notice that, in this 

Lyapunov approach in contrast to the 2L learning-algorithm only one variable of vector 1kx , that is the 

measure of output composition of the second reactor, is applied for the wave-net model adaptation at each 

step.  
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Fig. 5. 2T  and Q  statistics plot for sample-wise RPCA 

In Fig. 3 the output of the process when no disturbance has occurred (dash-dash line), output after 

disturbance has occurred (dash-dot line), approximated output with the current Lyapunov approach (dash-

circle line), and approximated output that updates the parameters of (10) and (11) based on sample-wised 

RPCA (solid line), are illustrated. RPCA avoids the adaptation of wave-net model for the 40
th
 -60

th
 

samples and results in a fixed model in this interval. The whole precedure for final update of the current  

and the proposed approach takes 11.33 seconds and 10.73 seconds, respectively. Comparison of the results 

that are illustrated in Figs. 2 and 4 confirms the effectiveness of our approach. 

In the following figures, results of the output temperature of the first reactor are also considered. 

Figure 6 shows real output temperature and it’s approximation by the early wave-net model with the 

features that were previously described. 

0 10 20 30 40 50 60 70 80
344

346

348

350

352

354

356

358
real output and its approximation by early wave-net model

sample number

te
m

p
e
ra

tu
re

(C
)

 

 

real output

approximation by early wave-net model

 
Fig. 6. Real output temperature and its approximation of early wave-net model 
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In Fig. 7 the output temperature when no disturbance has occurred (dash-dash line) and output after 

disturbance has occurred (dash-dot line) are presented. In this figure, dash-circle line and solid line 

represent approximated output temperature with the current on-line wave-net learning method, and 

approximated output with 2L learning-algorithm based on on-line monitoring in the block-wised phase, 

respectively. The whole precedure for final update of the current and the proposed approach takes 20.60 

seconds and 18.25 seconds, respectively.  
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Fig. 7. Output temperature approximation based on blocked-wised adaptation 

In Fig. 8 the output temperature when no disturbance has occurred (dash-dash line) and output after 

disturbance has occurred (dash-dot line) are presented. In this figure, dash-circle line and solid line 

represent approximated output temperature with the current on-line wave-net learning method, and 

approximated output with Lyapunov approach based on on-line monitoring in the sample-wised phase, 

respectively. The whole precedure for final update of the current and the proposed approach takes 11.64 

seconds and 11.20 seconds, respectively. 
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Fig. 8. Output temperature approximation based on sample-wised adaptation 
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8. CONCLUSION 

As most real industrial processes are time varying, developing on-line intelligent models to capture such 

variations are very appealing. Current on-line modeling techniques adapts the primary identified process 

model with the new changes in time varying processes without taking into consideration abnormal 

situations in the process operation. To overcome this problem, this paper proposed combining process 

monitoring techniques with on-line learning methods. For this purpose, wave-net on-line techniques and 

recursive principal component analysis (RPCA) methods were invoked to show the effectiveness of this 

proposition. A double continuously stirred tank reactor (CSTR) was considered as a case study.  
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