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Abstract– In this paper, sufficient conditions are proposed to investigate the robust stability of 

arbitrary switched linear systems with uncertain parameters belongs to the known intervals. In 

addition, a method is then established to determine the maximum intervals of parameters' 

variations which guarantee robust exponential stability of uncertain switched linear systems under 

arbitrary switching. In the proposed method, the known information about the parametric structure 

of uncertainties is considered; therefore it will result in less conservative stability margins. A 

generalization of the method is also provided to determine stability bounds on perturbations of 

entries in subsystem matrices, when subsystems are subjected to independent perturbations. 

Numerical examples are included to illustrate the effectiveness of the results, and compare them 

with the previous results. It is shown that the proposed methods provide stability intervals on the 

uncertain parameter for all switched linear systems which admit a common quadratic Lyapunov 

function for the nominal system.           
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1. INTRODUCTION 
 

Switched linear systems are an important class of dynamic systems which consist of a collection of linear 

time-invariant subsystems and a switching signal to arrange the switching between the subsystems. 

Switched linear systems have received growing attention, due to the wide range of their applications in 

modeling [1-3], control [4-7], and stability analysis [8-11] of complex nonlinear systems. When the 

switching mechanism is undetermined, or too complicated to be useful in the stability analysis, switched 

linear systems should be investigated under arbitrary switching [12, 13]. In this paper, we consider the 

continuous-time arbitrary switched linear systems of the form 

 ̇             ,                                                                (1) 

where      is the vector of continuous states and           {       } is the switching signal, 

generated by an unknown or nondeterministic left continuous piecewise constant function.  

So far, stability of arbitrary switched linear systems without perturbations has been investigated in 

many publications. It has been proven that an arbitrary switched linear system is globally asymptotically 

stable, if and only if a common Lyapunov function (CLF) exists for all subsystems. In many articles, 

common quadratic Lyapunov functions (CQLFs) are focused on, due to the ability of CQLFs in converting 

the stability analysis to a set of linear matrix inequalities (LMIs). In [14-21] and references therein, 

necessary and/or sufficient conditions were proposed to guarantee the existence of a CQLF for switched 

linear systems. In addition, some Lie algebraic condition was proposed in [22, 23], for existence of a 
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CQLF. It is also shown in [19], that existence of a CQLF guarantees the exponential stability of an 

arbitrary switched linear system. Besides, some efforts have also been made to guarantee the existence of 

a CQLF for special classes of switched linear systems, such as switched positive linear systems (SPLSs) 

[24, 25]. Since the states of SPLSs are naturally nonnegative, the CQLF based stability conditions are 

generally conservative. Hence, some other forms of common positive Lyapunov functions are introduced 

in [26-28] for SPLSs.  

In the stability analysis and control of dynamic systems, uncertainties play a critical role [29-31]. 

Robust stability of arbitrary switched systems has been investigated in several references, such as [32-36]. 

In [32], sufficient conditions are proposed based on the generalized matrix measure to guarantee the robust 

local stability of arbitrary switched nonlinear systems with unstructured uncertainties. The conditions are 

only applicable for robust stability analysis of switched linear systems, if all eigenvalues of       
   are 

negative for each subsystem    . The cycle analysis method and the generalized matrix measure are 

also utilized in [33] to obtain some robust stability conditions for switched nonlinear systems. In [34], 

robust stability of a class of switched linear systems was investigated, in which the n-dimensional 

subsystem matrices share n-1 linearly independent common left eigenvectors. The results of [23] are also 

extended in [35] to offer the robust stability conditions based on the definition of closeness of the 

collection of subsystems to one with nice commutation relations. Some conditions, in terms of smallness 

of appropriate commutators of the subsystem matrices, are also formulated in [36] to guarantee the robust 

stability of arbitrary switched linear systems with unstructured uncertainties. In addition, robust quadratic 

stability of a class of switched linear systems which share a common invariant subspace is addressed in 

[37], utilizing the concept of invariant subspaces. It should be noted that the considered uncertainties in 

[32-37] are of the unstructured type, which does not possess obvious physical interpretation. Moreover, if 

robust stability of parametric uncertain switched linear systems is investigated by the theorems for 

unstructured uncertain systems, the known information about the structure of uncertainties should be 

ignored. Therefore, additional uncertainties which will never arise in the given system will be included, 

and the conservativeness will be increased [38]. So, a parametric approach is needed to decrease the 

conservations in stability analysis of parametric uncertain switched linear systems. 

In this paper, robust exponential stability of arbitrary switched linear systems with parametric 

uncertainties is addressed. These kinds of uncertainties arise in practice, when state equations are derived 

from physical laws, based on the uncertain physical parameters. First, sufficient conditions are proposed to 

investigate robust exponential stability of arbitrary switched linear systems, assuming that uncertain 

parameters belong to known intervals. Then, upper bounds on parametric uncertainties are determined, 

such that robust exponential stability of switched linear systems is ensured under arbitrary switching 

signals. Since the estimated upper bounds depend on the choice of CQLFs, an optimization algorithm is 

also offered to calculate the maximum guaranteed stability intervals. Moreover, the proposed method is 

generalized to the unstructured uncertain switched linear systems with independent perturbations on the 

entries of subsystem matrices. The presented results are applicable for all switched linear systems, in 

which the nominal system is quadratically stable with a CQLF          , while the previous 

publications may not provide stability bounds for such cases (see, e.g., the first example in section 5, 

where [32, 35] do not offer any bound). It should be noted that a parametric uncertain switched linear 

system, with   uncertain physical parameters, may also be considered as a polytopic switched linear 

system with    vertices. So, complexity of theorems for polytopic uncertain systems will be increased 

considerably when number of uncertain parameters increases, while the maximum stability intervals will 

not be significantly increased. It is also illustrated in the numerical examples of Section 5, that maximal 

guaranteed stability intervals of this paper may be larger or even infinite from one side, compared with 
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stability results of polytopic uncertain systems such as [39]. Numerical examples illustrate the 

effectiveness and simplicity of the proposed results, compared with previous results. 

Notations: Throughout this paper, the following standard notations are used.    denotes all n-

dimensional real valued vectors, and      is the space of      matrices with real entries. For     , 

 ‖ ‖   denotes Euclidean norm of vector  . For a square matrix       ,    indicates transpose of 

matrix  , and ‖ ‖  indicates 2-norm of matrix   which is calculated as ‖ ‖     
   

 
‖  ‖ 

‖ ‖ 
.      is also 

used to show negative of the maximum real part of the eigenvalues of  . Moreover, the largest and 

smallest singular values of matrix   are shown by         and         respectively. In addition, we 

mean by     (or    ) that matrix   is positive (semi) definite, while     (or    ) means that 

matrix   is negative (semi) definite.  

 

2. PROBLEM FORMULATIONS AND PRELIMINARIES 

In the stability analysis of switched linear systems, uncertainties of subsystem matrices play an important 

role.  In this section, we will formulate the parametric uncertainty, which usually arises when state 

equations are derived based on physical considerations, but some physical parameters contain uncertainty. 

Parametric uncertainties may be caused by inability in precisely measuring parameters, or actual 

parameter variations during system operation. In the parametric uncertain switched linear systems, some 

entries of subsystem matrices depend on the uncertain parameters. Let us consider parametric uncertain 

subsystem matrices    as 

        
       

                                                        (2a) 

     
      ∑      

  
                                                       (2b) 

where   [          ] is the vector of physical parameters,    [  
    

      
 ] is its nominal value, 

and    [             ] is the perturbation around the nominal value of parameters vector (  

     ).   
  is also defined as   

      
   and   

  is the uncertainty structure matrix, describing how 

   depends on the uncertain parameter   . If physical parameter    does not enter in the l-th subsystem,   
  

is a null matrix. Here, we present the definitions and lemmas which are used in the proceeding sections. 

Definition 1 [40]: The ratio of the largest singular value to the smallest one in the singular value 

decomposition of a matrix   is called the condition number of matrix   and is shown by     . 

Definition 2 [33]: The modulus matrix of   is shown by | |  and is defined as | |  [|   |]. 

Lemma 1: For each matrix  , norm inequality ‖ ‖  ‖ | | ‖  holds. 

Proof: Let      be a vector such that ‖ ‖     
   

 
‖  ‖ 

‖ ‖ 
 

‖  ‖ 

‖ ‖ 
. It should be noted that ‖ ‖  

‖| | ‖ , since ‖ ‖ 
  ∑   

  
    ∑ |  |

  
    ‖| | ‖ 

 . Therefore, 

 ‖  ‖ 
  ‖|  | ‖ 

  ∑ |∑      
 
   |

  
    ∑ |∑ |     |

 
   |

  
    ∑ |∑ (|   ||  |)

 
   |

  
    

‖| | | | ‖ 
  and ‖  ‖  ‖| | | | ‖ . So, by setting    , it will be concluded that ‖ ‖  

‖  ‖ 

‖ ‖ 
 

‖| |  ‖ 

‖ ‖ 
, where   | | . In addition, 

‖| |  ‖ 

‖ ‖ 
    

   
 
‖| |  ‖ 

‖ ‖ 
 holds. Hence, ‖ ‖  ‖ | | ‖  holds for 

all matrices  .  

Lemma 2: (Rayleigh–Ritz ratio [41]) for a given positive definite symmetric matrix       , 

inequalities        ‖ ‖ 
              ‖ ‖ 

  hold for any nonzero vector     .  

Assumption 1: It is assumed that a CQLF exists for the nominal switched linear system  ̇         
     . 

In other words, there exists a positive definite matrix  , such that   
  
     

    holds for all    . 
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3. STABILITY OF ARBITRARY SWITCHED LINEAR SYSTEMS WITH  

PARAMETRIC UNCERTAINTIES 

In this section, sufficient conditions are first proposed to investigate whether an arbitrary switched linear 

system with parameter uncertainties belongs to known intervals,     [        ] is robustly 

exponentially stable. Then, another theorem is presented to estimate how wide physical parameters of a 

switched linear system can vary from their nominal values, such that robust exponential stability of 

uncertain arbitrary switched system is guaranteed. 

Theorem 1: Consider an uncertain switched linear system with    described as (2) and     [        ]. 

The switched linear system is robustly exponentially stable under arbitrary switching signal, if a positive 

definite matrix     and positive scalars    exist such that   
  
     

       and inequality (3) 

holds. 

‖∑   |  
 |

 
 
   ‖

 
 

  

 ‖ ‖ 
                                                          (3) 

Proof: According to [19], existence of a CQLF is a sufficient condition for exponential stability of a 

switched linear system. Therefore, uncertain arbitrary switched linear system (1), (2) is robustly 

exponentially stable, if CQLF           stays decreasing ( ̇     ) along with the trajectories of 

each subsystem    , for all uncertainties of parameters, satisfying (3). In other words, the uncertain 

switched linear system (1), (2) will be robustly exponentially stable, if  

  (  
  
     

 )    (∑    *  
  
      

 + 
   )                                  (4) 

for all     and     . 

Since           is a CQLF for nominal switched linear system,   
  
     

        holds for 

all     where    is a positive definite matrix. So, (4) will be assured if ∑    
 
   *  

  
      

 +     

for each subsystem    . In addition, according to Lemma 2, inequality ∑    
 
   *  

  
      

 +     

holds, if 

‖∑    
 
   *  

  
      

 +‖
 
                                                 (5) 

for all    , where ‖∑    *  
  
      

 + 
   ‖

 
  ‖ ‖ ‖∑ (     

 ) 
   ‖

 
, since ‖  ‖  ‖ ‖ ‖ ‖  

holds for any pair of matrices   and  , with appropriate dimensions [42]. Moreover, Lemma 1 shows that 

‖∑ (     
 ) 

   ‖
 
 ‖∑ |     

 |
 

 
   ‖

 
 ‖∑ |   ||  

 |
 

 
   ‖

 
 ‖∑   |  

 |
 

 
   ‖

 
 for all    . 

Therefore, (5) will be satisfied if  

‖∑   |  
 |

 
 
   ‖

 
 

        

 ‖ ‖ 
                                                   (6) 

for all    . 

Besides, since positive scalar    exist such that   
  
     

      , it will be concluded that 

     (  
  
     

 )           . So, (6) will be satisfied if inequality  

‖∑   |  
 |

 
 
   ‖

 
 

         

 ‖ ‖ 
                                                      (7) 

holds. Moreover,           holds, since    . Therefore, inequality (7) will be satisfied, if (3) holds, 

and the proof is completed.  

Now, upper bounds on intervals of the uncertain parameters will be determined, such that robust 

stability is ensured. To estimate the parametric stability margins, parametric uncertainties are considered 

as        , where         {       } indicates the weight of uncertainty on the  -th parameter and 
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    is also the weighted bound of uncertainties. So, the problem will be changed to finding maximum 

value of   , such that uncertain switched linear system is robustly exponentially stable for     

[          ]. Theorem 2 gives an upper bound on  , considering that Assumption 1 is satisfied.  

Theorem 2: Consider a switched linear system with uncertain matrices    described as (2). Assume that a 

positive definite matrix   and positive scalars    exist such that   
  
     

      . The arbitrary 

switched linear system will be robustly exponentially stable, for all     [          ], if   holds in 

  
  

     ‖∑ (  |  
 |

 
) 

   ‖
 

                                                     (8) 

for all    . In addition, for   {       }, if matrices *  
  
     

 +         are negative semi-

definite (or positive semi-definite), the uncertain switched system will also be exponentially stable for     

which belongs to the following interval: 

    [        ) , if  *  
  
     

 +                                    (9a) 

    (        ] , if  *  
  
     

 +                                    (9b) 

Proof: Similar to the proof of Theorem 1, the uncertain switched linear system will be robustly 

exponentially stable, if inequality (4) holds for all     and     . Inequality (4) is rewritten as 

(∑    *  
  
     

 + 
   )   (  

  
     

 )                                  (10) 

Since           is a CQLF for the nominal switched linear system, and   
  
     

       

holds, then (10) will be satisfied, if (∑    *  
  
     

 + 
   )      for each subsystem    . 

Moreover, according to Rayleigh–Ritz ratio (Lemma 2), (∑    *  
  
     

 + 
   )      will be 

satisfied if  

‖∑    *  
  
     

 + 
   ‖

 
                                                 (11) 

for all    . Moreover, Lemma 1 ensures that 

‖∑    *  
  
      

 + 
   ‖

 
   ‖ ‖ ‖∑ (  |  

 |
 
) 

   ‖
 
 for each    . So, (11) will be satisfied 

if ‖∑ (  |  
 |

 
) 

   ‖
 
  

  

      
, or equally (8) holds. Thus, the proposed uncertain switched linear 

system with     [          ] will be exponentially stable if   holds in (8). 

In addition, if there exists a   {       }, such that matrices *  
  
     

 +         are all 

negative semi-definite, it is easy to verify that (10) holds for all       and     [          ]     , 

where   holds in (8). Hence, if     [          ]  [      [       ), the proposed switched 

linear system will be robustly exponentially stable. Correspondingly, if matrices *  
  
     

 + are 

positive semi-definite for a   {       } and all subsystems    , the considered switched system will 

be robustly exponentially stable for     (        ]. So, the proof is completed.  

Remark 1: If weights of parameter uncertainties are chosen equal to the nominal values of parameters, 

i.e.,      
 , the uncertain parameters will belong to      

 [        ]. In other words, the resulted   

from Theorem 2 shows the percent tolerance bound of parameters (  
         ). 

Remark 2: As it was mentioned in the Introduction, if switched linear systems (2) are considered as 

polytopic switched linear systems, stability bounds on the physical parameters will not significantly be 

increased, while the complexity will be increased so much for the large number of unknown parameters. 

Moreover, in some examples, especially when matrices *  
  
     

 + are negative semi-definite (or 
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positive semi-definite) for all    , applying Theorem 2 will result in larger stability margins than those 

theorems for polytopic uncertain switched linear systems.  

Remark 3:  The proposed theorems for parametric switched linear systems can be easily extended to 

unstructured uncertain switched linear systems, in which subsystem matrices are exposed to independent 

perturbations of entries. For this purpose, we need to consider each uncertain entry as an uncertain 

parameter. Therefore, an unstructured uncertain switched linear system can be considered as a parametric 

switched linear system with at most    uncertain parameters.  

The following corollary is a generalization of Theorem 2, which gives upper stability bounds on entry 

perturbations in arbitrary switched linear systems. For this purpose, the unstructured uncertainties of 

subsystem matrices     [     
 ]

   
 are considered as 

    ∑ ∑      
     

 
   

 
   ,                                                      (12) 

where,      
  shows the perturbation of (   )-th entry in the  -th subsystem matrix, and uncertainty 

structure matrix      is defined as the sparse matrix      [    ]   , where 

      {
            
                

.                                                        (13) 

Similarly, the entry perturbations are considered as      
        

 , where     
          {       }   

 , indicates the given weight of perturbation of the (   )-th entry, and      indicates the weighted 

perturbation of the  -th subsystem. So, the problem will be changed to finding the maximum values of    , 

such that uncertain switched linear system (1), (12) is robustly exponentially stable for      
  

[     
          

   ].  

Corollary 1: Consider an uncertain switched linear system (1), (12) with      
  [     

          
   ]. The 

arbitrary switched linear system is robustly exponentially stable if a positive definite matrix   and positive 

scalars          exist, such that   
  
     

       and    holds in  

   
  

     ‖  ‖
 

,                                                                    (14) 

for each    , where    is defined as    [    
 ]   . 

Proof: From Theorem 2, it is known that uncertain switched system (1), (12), and (13) is robustly 

exponentially stable under arbitrary switching signal, if    
  

     (‖∑     
 |    | 

 
     ‖

 
)
. Since |    |  

     for all     {       }, then ∑     
 |    | 

 
         [    

 ]   , and 
  

     (‖∑     
 |    | 

 
     ‖

 
)
 

  

     ‖  ‖
 

. Thus, the proposed uncertain switched linear system is robustly exponentially stable, if    

holds in (14).  

  

4. MAXIMUM GUARANTEED STABILITY INTERVALS 

In this section, a computational algorithm is proposed to maximize the guaranteed stability bounds on  , 

given in the previous section. The maximum upper bound of  , given from Theorem 2 (or Corollary 1), 

will be obtained corresponding to the positive definite symmetric matrix P which maximizes cost 

functions    
  

     
        , where    is the maximum positive scalar which satisfies the 

constraint   
  
     

      . Obviously,    depends on the choice of matrix P. The following 

algorithm is proposed to maximize    on positive definite matrices P and positive scalars   . Hence, for 

each    , the proposed algorithm should carry out the min-max problem (15a) over positive definite 
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matrices   and supremum problem (15b) over positive scalars            ], subject to   
  
     

  
   , where         

   
      

   . 

  ̅     
   

{   
   

   |
    

}                                                      (15a) 

      
           ]

{  ̅}                                                              (15b) 

For a fixed value of     ,    
   

,   
   

   - will be obtained corresponding to the positive definite 

matrix P with minimum condition number, such that constraint   
  
     

       is satisfied for each 

   . The following lemma which is given from [40], formulates the problem of finding the positive 

definite matrix P with minimum condition number, such that constraints   
  
     

             

are satisfied. 

Lemma 3: The problem of finding the positive definite symmetric matrix P with minimum condition 

number, which holds in constraints   
  
     

     , can be formulated as LMIs shown in (16). 

minimize μ  

subject to ,           and    
  
     

                   (16) 

So, the maximum value of    
   

   |
    

, in (15a), will be obtained by solving LMIs (16). Maximizing 

problem (15b) can also be solved numerically, searching for the maximizing value of   in the linearly 

spaced sequence   ,      (
 

 
)             -, and       

   
{  ̅} for sufficiently large values 

of N. For the choice of N, there is a tradeoff between complexity of the algorithm and optimality of the 

result.  

 

5. NUMERICAL EXAMPLES 

In this section, two examples are presented to show the effectiveness of the proposed theorems and 

corollary in calculating upper bounds on both parametric uncertainties and independent entry 

uncertainties. Therefore, a three-dimensional two-form uncertain switched linear system and a planar two-

form uncertain switched linear system are investigated using the YALMIP solver. The results are also 

compared with the results of [32, 35], and [39]. 

Example 1: Consider a parameterized arbitrary switched linear system with subsystem matrices 

   [
            

             
                

]   

   [
              

            
           

],                                           (17) 

where parameter vector   is defined as   [        ]  [     ], and    [     ]. The nominal 

switched linear system, with subsystem matrices  

  
  [

     
     
      

]     
  [

      
    
    

],                                        (18) 

is globally exponentially stable, since there exists a CQLF for the nominal subsystems. In addition, 

uncertainty structure matrices are   
  [

      
      
      

]     
  [

    
   
      

]  



M. A. Bagherzadeh et al. 

 

IJST, Transactions of Electrical Engineering, Volume 39, Number E1                                                                            June 2015 

86 

  
  [

   
    
    

]    
  [

      
      
      

]    
  [

      
      
      

]    
  [

    
   
    

]  

and   
  [

    
    
   

]. 

It should be noted that, Theorem 2 of [32] does not bring out any suitable answer for the stability 

margin, since     ([  
    

  
]  )   . Actually Theorem 2 of [32] provides a satisfactory stability 

margin, when          is a CQLF for the nominal subsystems. In addition, results of [35] will not give 

a stability bound, since proposition 4 of [35] states that if  ̅   ̂        
 

 
          

          (
 

 
      

   
 

 
          )   , the arbitrary switched linear system is stable, while 

for the nominal switched linear system (18),   ̅   ̂        .  

a) Assume that unknown parameters belong to intervals   [        ]   [        ]  and   

[          ]. Theorem 1 will be used to investigate robust exponential stability of the considered switched 

linear system. Since there exist positive definite matrix   [
       
         
      

] (   , ‖ ‖        ) 

such that   
  
     

        and ‖∑   |  
 |

 
 
   ‖

 
 

   

  ‖ ‖ 
. Therefore, the uncertain switched linear 

system (17) is robustly exponentially stable for uncertain parameters belong to the considered intervals. 

b) Now, the maximum percentage tolerance of uncertain parameters will be calculated, so that the robust 

stability is guaranteed by Theorem 2. For this purpose, weights of uncertainties will be chosen as      
 . 

As it is shown in Fig. 1, the maximum value 
  

     
, using the proposed algorithm, is 1.2628, which 

corresponds to    [
                   

              
        

] and          . Hence, uncertain switched linear 

system (17) is robustly exponentially stable for       
 [                ]. In other words, if each 

uncertain parameter lies in an interval with        tolerance from its nominal value, the switched linear 

system (17) is robustly exponentially stable. Moreover, since *  
  
      

 +            , switched 

linear system (17) will be exponentially stable for all   [              [               ]  

and   [               ]. The states trajectory of switched linear system (17) is plotted in Fig. 2, for 

                   and         , under an arbitrarily fast switching signal. 

 
Fig. 1: Graph of    

   
 {

 

     
 ; such that   

  
     

     } with respect to different values of  , for the 

 nominal linear subsystems (18). There is no CQLF for the nominal switched linear  

system such that   
  
     

      for         
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If the switched linear system (17) is considered as a switched linear inclusion system and the results 

of [39] are used, the stability bound will be 26.4 percent of the nominal values. It shows that although the 

complexity has been increased rather than the result of Theorem 2, stability bound has not been notably 

improved. In addition, the obtained stability interval from Theorem 2 is infinite from one side, for 

parameter  . 
 

 
Fig. 2. Switching signal and state trajectory of the switched linear system for 

                     and          

c) For the case that entries of subsystem matrices are subject to weighted perturbations, with the given 

weights     
      

  
 

  |   |
  for          , i.e.,    [

         
     
   

], Corollary 1 gives a bound on 

perturbation of entries of each subsystem matrix. Arbitrary switched linear system (17) is robustly 

exponentially stable, if perturbation of each entry (     
 ) belongs to      

  
 

  |   |
[                ], 

e.g.,      
  [                ] or equally,     

  [            ] and 

    
  [              ].  

Example 2: Consider a two-dimensional switched linear system  ̇             , where subsystem 

matrices are  

           [
       

     
 

 
 

 

 
 ]           *

      
        

+.                                   (19) 

    are unknown parameters with the nominal values       and     , and  the nominal switched 

linear system, corresponded to the nominal subsystems 

  
  *

    
   

+     
  *

   
    

+,                                               (20)  

is globally exponentially stable with the CQLF         
    

 . So, the proposed algorithm will be used 

to determine the maximum percentage tolerance of unknown parameters (from Theorem 2) and maximum 

perturbation of entries (from Corollary 1) such that robust stability is ensured. As it is shown in Fig. 3, the 

maximum value of  
  

     
, such that    

  
     

       for      , is 1.3697, which corresponds 

to   *
            

       
+ (            and          ). Moreover, uncertainty structure matrices 

  
  are written as   

  *
   
  

+    
  *

     
      

+    
  *

  
  

+  and   
  *

   
   

+. 

a) To determine the maximum percentage tolerance,       and       will be chosen and the largest 

weighted bound   will be obtained as 0.1931, which is equal to 19.3% of the nominal values of 

parameters. Moreover, *  
  
      

 +     for      . So, switched linear system (19) will be 
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exponentially stable for   [              ]   [           . In addition, for the nominal switched 

linear system (20),  ̅   ̂           . So, it will be concluded from [35] that the nominal switched 

linear system is asymptotically stable, and the maximum robust stability bounds on uncertain parameters 

will be obtained as 15.8% of their nominal values.  

 
Fig. 3. Graph of    

   
 {

 

     
 ; such that   

  
     

     } with respect to different values 

 of  , for the nominal linear subsystems (20). There is no CQLF for the nominal 

switched linear system such that   
  
     

      for         
 

To illustrate the effectiveness of Theorem 2, state trajectory of switched linear system (19) is plotted 

in Fig. 4, for          and      , under an arbitrarily fast switching signal. 

 
Fig. 4. Switching signal and state trajectory of the switched linear system for          and       

b) In the case that all entries are subject to independent uncertainties,    *
  
  

+       , an upper 

bound on entry perturbations, which guarantee the exponential stability is calculated as         . 

Moreover, if Theorem 2 of [32] is used to find a stability margin for the entries, it will be concluded that 

for the entry uncertainties which hold in [
|    

 | |    
 |

|    
 | |    

 |
]        *

  
  

+, the switched system is 

locally asymptotically stable. It shows that although stability notion in this paper is stronger than [32], the 

calculated stability radius from Corollary 1 is much larger. 

 

6. CONCLUSION 

Parametric uncertainties constitute a very common type of uncertainties in real-world applications. In this 

paper, robust exponential stability of arbitrary switched linear systems with respect to parametric 

uncertainties was analyzed. Sufficient conditions were proposed to investigate the robust exponential 

stability of arbitrary switched linear systems, when the uncertain parameters belong to the known 
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intervals. Another theorem was also given and proved to provide bounds on uncertain parameters such that 

robust exponential stability of the arbitrary switched linear systems is ensured. In addition, a corollary is 

proposed to generalize the results of the second theorem for the cases with independent perturbations on 

entries of subsystem matrices. Numerical examples illustrate the effectiveness and simplicity of the 

proposed results, compared with the previous published works. Numerical examples show that, although 

the previous results are more complicated, their maximum stability intervals are not significantly 

increased, or are even less than our results.  
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