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Abstract– In this paper, the problem of finite time stabilization for guidance system is investigated 

and a novel nonlinear guidance law against maneuvering targets is proposed based on the 

principles of parallel navigation. The proposed law is developed using two variable structure 

control techniques. By applying finite time integral sliding mode and combining it with terminal 

sliding mode, a new guidance law with finite time convergence is designed. It is demonstrated that 

the proposed law is able to drive the line-of-sight (LOS) angular rate to the origin in finite time, 

before the final time of guidance process. Due to their crucial importance, the autopilot dynamics 

are taken into account and finite time stability of the guidance system is guaranteed in spite of the 

autopilot dynamics. Furthermore, in practice, it is desirable that the target acceleration be regarded 

as an unknown bounded disturbance. Since the proposed law is robust against target maneuvers, 

the exact measurement or estimation of the target acceleration is not required. Three-dimensional 

simulation results verify the robustness and usefulness of the proposed technique.           
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1. INTRODUCTION 
 

Proportional navigation (PN) is known as the most popular approach to design guidance law due to its 

simplicity and efficiency; so, it has drawn the attention of many researchers [1, 2].  

Sliding mode control is one the most efficient methods to deal with model uncertainties and 

disturbances in control systems [3, 4]. During recent years, the sliding mode approach has also been used 

to design guidance law. In [5], a guidance law has been proposed based on first-order sliding mode so that 

it is robust against target maneuvers and it doesn’t need the exact measurement of the target maneuvers. 

By considering the dynamics of interceptor’s autopilot, a sliding mode-based guidance law with angle of 

attack constraint has been presented [6]. According to the principles of partial stability, a nonlinear 

guidance law against maneuvering targets has been designed [7]. This approach is based on the 

classification of the state variables within the guidance system dynamics with respect to their required 

stabilization properties. 

In recent years, the finite time stability for feedback control systems has become an active research 

area [8-11]. Using finite time stability approach, a guidance law has been proposed in [12]. The proposed 

law is able to guide the LOS angular rate to zero or a small vicinity of zero when the target maneuver is 

neglected. By introducing a new approach of finite time stability, a guidance law with finite time 

convergence has been presented based on Lyapunov scalar differential inequality [13], so that it is as 

complex as a first-order sliding mode guidance law. In [14, 15], two finite time convergent guidance laws 

have been proposed based on terminal sliding mode. These laws ensure that the LOS angular rate and the 
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LOS angular converge to zero and a desired impact angle respectively. However, they suffer from 

singularity. Non-singular terminal sliding mode approach has been used in order to overcome the 

singularity problem [16, 17]. The time taken to reach the equilibrium point from any initial state is 

guaranteed to be finite. To estimate the acceleration of the maneuvering target, a linear extended state 

observer is constructed [18]. The authors in [19, 20] presented two adaptive nonsingular terminal sliding 

mode-based guidance laws which do not require knowledge of the upper bound of the system 

uncertainties.  

Although the above guidance laws possess finite time convergence property, they were designed for 

ideal dynamics of interceptor. From a practical point of view, the interceptor dynamics may severely 

affect the miss distance. When actual dynamics are considered, at the vicinity of the interception, the LOS 

angular rate diverges and, correspondingly, the required interceptor maneuver accelerates. As a result, the 

guidance loop tends to instability. By considering the dynamics of the interceptor’s autopilot as a first-

order lag, guidance laws with finite time convergence have been designed in [21-23].  

Integral sliding mode can be described by adding an integrator in the sliding surface. A significant 

advantage of integral sliding mode is the improvement of the problem of reaching phase. In reaching 

phase, state variables have not yet reached the sliding surface, so the system is sensitive to any 

uncertainties or disturbances [24]. The issue of improving reaching phase has drawn an increasing 

attention in system and control theory; see, for example, [25]. The integral sliding mode control must 

maintain the system’s trajectories on the integral sliding mode till trajectories converge to zero in spite of 

any disturbances or uncertainties. This approach has also been used to design guidance law. Using 

trajectory linearization, an integral sliding mode-based guidance law has been designed in [26].  

Motivated by the above discussions, this paper introduces a new nonlinear guidance law against 

maneuvering targets. Variable structure control method is used to design the proposed guidance law. First, 

an integral sliding mode manifold including terminal sliding mode manifold is introduced. Then, a 

guidance law with finite time convergence is designed that is able to guide the LOS angular rate to zero 

within a finite time. Furthermore, the dynamics of the interceptor’s autopilot are considered as a first-order 

lag.  

The rest of this paper is organized as follows. In the next section, system description and problem 

formulation are given and the main results of the paper are then included, where a guidance law with finite 

time convergence is developed by combining integral sliding mode and terminal sliding mode approaches. 

In section 3, the planer finite-time convergent guidance law is extended to three-dimensional model. The 

simulation results are presented in section 4. Finally, concluding remarks are given in section 5. 

 

2. PLANAR FINITE TIME CONVERGENT GUIDANCE LAWS 

a) Formulation of pursuit–target engagement 

The geometry of planar interception is shown in Fig. 1. According to the principles of kinematics, the 

corresponding equations of motion between the target and the interceptor can be described by [13]: 

                          
2

T R MRR R a a    (1) 

                         

2 T Ma aR

R R R

       (2) 

 

where R  denotes relative distance between the target and the interceptor;   represents the LOS angular 

rate; 
TRa  and 

MRa  denote the target and the interceptor acceleration along the LOS, respectively; and 
Ta 

 

and 
Ma 

 represent the target and the interceptor acceleration normal to the LOS, respectively. 
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Fig. 1. Planar interception geometry 

Furthermore, the autopilot dynamics can be considered as a first-order differential equation as 

follows: 

                

1 1
M Ma a u 

 
    (3) 

where   represents the autopilot’s time constant, and u  denotes the command to the autopilot. 

Let 
1x   and 

2 1x x   . Substituting them into Eq. (2) yields: 

             2 1g g M g Tx a x b a b a      (4) 

where 

           

2 1
,g g

R
a b

R R
   (5) 

It is clear from Eq. (4) that 

           

1 2

1
( )T M g

g

a a a x x
b

     (6) 

Differentiating Eq. (4) with respect to time and using Eq. (3) and (6) gives 

                   2 1 1 2 2 Mx A x A x bu ba f      (7) 

where 

                               

1 2,

,

g g

g g g

g g

g

g T

b b
A a a A a

b b

b
b f b a 



     

  

 (8) 

Thus the state space can be described as 

                                       

1 2

2 1 1 2 2 M

x x

x A x A x bu ba f



    
 (9) 

In Eq. (9), f is viewed as a bounded external disturbance, i.e. f   , where . 0const   . 
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According to parallel navigation notion, if LOS direction is kept unchanged with respect to inertial 

frame and relative range between the interceptor and the target is getting low , collision will be 

certain [2]. In other words, the LOS rate must be zero.  

b) Finite-time stability of nonlinear systems 

In this section, a finite-time convergent guidance law is designed to guarantee that the LOS angular 

rate converges to zero in finite time. Before giving the design procedure, some results about finite-time 

stability of nonlinear system, which will be utilized in the following guidance law design, are introduced. 

Definition 1: Consider the following nonlinear system [8]: 

                               
( ) ( , ), (0, ) 0, nx t f x t f t x R    (10) 

where 
0: nf U R R   is continuous on 

0U R , and 0U  is an open neighborhood of the origin 0x  . 

The equilibrium 0x   of the system is finite-time convergent if for any given initial time 0t  and initial 

state 
0 0(t ) /{0}x x U  , there exists a settling time 

0( ) 0T x  , such that every solution of the system (10), 

0( ) ( , ) /{0}x t t x U   satisfies 

                         

0
0 0

( )

0 0

lim ( , ) 0, [0, ( )]

( , ) 0, ( )

t T x
t x t T x

t x t T x






 


 

 (11) 

In addition, if nU R , then 0x   is a global finite-time stable equilibrium. 

The following Theorem provides a useful result for the study of finite time convergent guidance laws. 

Theorem 1: Consider the nonlinear system (10). Suppose that there is a 
1C  (continuously differentiable) 

function ( , )V x t  defined in a neighborhood ˆ nU R  of the origin, and that there are real numbers 0   

and 0 1  , such that ( , )V x t  is positive definite on Û  and that ( , ) ( , ) 0V x t V x t   on Û . Then, 

the zero solution of system (10) is finite time stable. Furthermore, the settling time is calculated as 

follows: 

                          

1

0( ,0)

(1 )

V x
T



 






 (12) 

Remark 1: Note that if ˆ nU R  and ( , )V x t  is radially unbounded, then the origin is globally finite-time 

stable [13]. 

c) Guidance law with finite-time convergence 

In this section, a combination of terminal sliding mode and integral sliding mode is considered so as 

to design a new guidance law with finite time convergence. The main purpose of combining these two 

approaches is to increase robustness of the guidance system and achieve finite time convergence property 

so that the sliding surface 1s  increases the robustness of the guidance system against highly maneuvering 

targets and the sliding surface 2s  makes the LOS angular rates converge to zero in finite time. 

For the time-varying guidance system (9), an integral sliding manifold is described as follows: 

                        0

1 2 2 0

t

( ) ( )

t

noms x t x t d      (13) 

where 
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 

1

2 1 2sgnnom x x k s


 


  
   

       (14) 

and 2s  is a terminal sliding manifold which can be described as  

                2 2 1 1sgn( )s x x x


 
 
 (15) 

where 0k  , 0  , 0 ( ) 1p q    and both p  and q  are positive odd integers. Note that 

1 0( ) 0s t   at 0t t , so the system always starts at the sliding manifold. 

Theorem 3: Consider the guidance system (9). The finite time convergent guidance law  

                          
 1 1 2 2 1

1
sgn( )M nomu A x A x ba s

b
         (16) 

ensures the LOS angular rate converges to zero in finite time, where     and 0   is a constant. 

Proof: Differentiating Eq. (13) with respect to time gives 

                         

1 2

1 1 2 2

1sgn( )

nom

M nom

s x

A x A x bu ba f

f s









 

     

 

 (17) 

Define a Lyapunov function as 

                            
2

1 1V s  (18) 

Computing the first-order derivative of 1V  along the trajectories of Eq. (17) results in 

                               

 1 1 1 1 1 1 1

0.5

1 1

( ) 2 2 2

2

V s s s s f s s

V V

 



    

 
 (19) 

By virtue of Theorem 1, Eq. (19) shows that the manifold 1 0s   can be reached in presence of the target 

maneuver. When 1 0s   , we have 

                              0

1 2 2 0

t

( ) ( ) 0

t

noms x t x t d      (20) 

The Eq. (20) can be rewritten as 

                        

1 2

2

0nom

nom

s x

x





  

 
 (21) 

Also, we already had  

                       1 2x x  (22) 

According to the Eqs. (21) and (22) we can state 

                         

1 2

2 nom

x x

x 




 (23) 

For the system (23), a terminal sliding manifold can be selected as Eq. (15). For the TSM in (15), its 

derivative along the system (23) is 
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1

2 2 1 1

1

2 1 2sgn( )nom

s x x x

x x k s







 





 

   
 (24) 

Now consider a positive definite Lyapunov function as 

                               
2

2 2V s  (25) 

By differentiating 2V  and utilizing Eq. (24), one has 

                              
0.5

2 2 2 2 2 2( ) 2 2 2V s s s k s kV      (26) 

According to the Theorem 1, the system states reach the sliding mode 2 0s   in finite time. It is clear that 

in the sliding mode 2 0s  , the following equation is satisfied 

                               2 1 1sgn( ) 0x x x


   (27) 

Define a Lyapunov function as 

                     
2

3 1V x  (28) 

Differentiating 3V  along the trajectory of Eq. (27) gives 

                    

 3 1 1 1 2 1 1 1

1 ( 1) 2

1 3

2 2 2 sgn( )

2 2

V x x x x x x x

x V



 



 
 

   

   
 (29) 

According to the Theorem 1, the system states converge to zero in finite time. The proof is completed.  

In the meantime, in practical applications, the rate of relative range R can be approximately viewed 

as a constant, i.e. 

          
, . 0, 0cV R c c const R       (30) 

By combining Eq. (5) with Eq. (30), and simple algebraic calculations, one has 

           
1 2

3 1
0, ,

c
A A b

R R
     (31) 

Hence, substituting Eq. (31) into the guidance law (16) results in 

           
  1

2 2 1 2 13 sgn sgn( )Mu c x a R x x k s s


   


      (32) 

Remark 2: It can be seen that the proposed law involves the signum function, so it can cause the 

chattering phenomenon. An approximation of the signum function by a saturation function with a high 

slope (1 )  is considered to alleviate this problem.  

 

3. THREE-DIMENSIONAL GUIDANCE LAW WITH FINITE-TIME CONVERGENCE 

Consider the spherical LOS coordinate system (r, , )   with origin fixed at gravity center of the 

interceptor. Let ( , , )re e e   be the unit vectors along the coordinate axes. The three-dimensional 

interceptor-target geometry is illustrated in Fig. 2. According to the principles of kinematics, the 

components of the relative acceleration can be described as follows [27]: 

       

2 2 2cos TR MR RR R R a a a        (33) 
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cos 2 cos 2 sin T MR R R a a a             (34) 

             

22 sin cos T MR R R a a a            (35) 

Moreover, the autopilot dynamics can usually be considered as follows 

         
1

1 1
M Ma a u 

 
    (36) 

               
2

1 1
M Ma a u 

 
    (37) 

The target acceleration is assumed as an external disturbance so that only its upper bound is available. 

Since Thrust Vector Control does not exist and the acceleration normal to velocity of interceptor can only 

be adjusted, we just consider the relative motion normal to the LOS. The control objective is to nullify the 

LOS angular rate   and   in finite time. If   is a small variable, it yields sin 0   and cos 1  . 

Hence, Eq. (34) and Eq. (35) decoupled into  

                    

2 M Ta aR

R R R

       (38) 

                   

2 M Ta aR

R R R

 
      (39) 

It is clear that Eq. (38) and (39) are completely similar to Eq. (2), so the decoupled three-dimensional LOS 

angular motion is equivalent to two planar LOS angular motions and two planar finite time convergent 

guidance laws are then designed [13]. 

 
Fig. 2.  Three-dimensional missile-target geometry 

Based on the results obtained in Section 3.1, the two guidance laws with finite time convergence 

considering the autopilot lag can be proposed as follows: 
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 

1

1 2 1 13 sgn( ) sgn( )Mu c a R k s s


       


      (40) 

                    
 

1

2 4 2 33 sgn( ) sgn( )Mu c a R k s s


       


      (41) 

where  

                         

  
0

1

1 0 1 2

t

2

( ) ( ) sgn 0

sgn( )

t

s t t k s d

s





    

   



    

 


 (42) 

and  

                          

  
0

1

3 0 2 4

t

4

( ) ( ) sgn 0

sgn( )

t

s t t k s d

s





    

   



    

 


 (43) 

 

4. SIMULATION RESULTS 

Numerical simulations are performed to examine the performance of the proposed guidance law against a 

highly maneuvering target. The initial conditions of the simulations are taken as 0 5R km , 

0 300 sR m  , 0 3  , 0 3  , 
0 0.08 rad s   and 

0 0.06 rad s  . Assume that the target 

accelerations are 30 sin(0.3 4)Ta t    and 20 cos(0.2 )Ta t  . Furthermore, the parameters of the 

proposed law are chosen as 8  , 0.9  , 1 0.003k  , 2 0.002k  , 1 2 0.01    and 0.1  .  

The terminal sliding mode guidance law (TSMG) presented in [22] is simulated under the same 

condition to verify the effectiveness and robustness of the proposed guidance law. This is because the 

TSMG is a guidance law with finite time convergence containing first-order autopilot lag. In [22], it has 

been shown the TSMG is better than the finite-time convergent guidance law (FTCG) [13] and the 

adaptive sliding-mode guidance law (ASMG) [28]. It is worth noting that the author in [22] only used the 

sliding surface 2s  and we are about to show the effect of adding the sliding surface 1s  in guidance law 

design procedure. In this section, the following simulation results will prove that the proposed guidance 

law has gained better performance compared to the TSMG. Numerical simulations are shown in Fig. 3 to 

Fig. 7. 
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Fig. 3. The sliding variable 
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Fig. 4. The LOS angular rate in azimuth loop 

0 2 4 6 8 10 12 14 16
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Time (sec)


.  
(r

a
d
/s

e
c
)

 

 

Proposed

TSM

 
Fig. 5. The LOS angular rate in elevation loop 
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Fig. 6. The acceleration command in azimuth loop 
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Fig. 7. The acceleration command in elevation loop 

Figure 3 shows that under the proposed guidance law the integral sliding variables start from zero and 

they remain in a very small neighborhood of origin
18(10 )

. So the reaching mode has been omitted. 

Figures 4 and 5 illustrate that the proposed guidance law has better performance to nullify the LOS 

angular rates.  

Figures 6 and 7 show the acceleration commands. As it can be seen, the proposed law needs less 

effort than the TSMG. Figure 8 illustrates the trajectories of the interceptor and the target. Figure 8 

verifies that the proposed law is able to intercept the target.    
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Fig. 8. Trajectory of the interceptor and the target 

 

5. CONCLUSION 

In this paper, by considering the dynamics of an interceptor’s autopilot as a first-order lag, a guidance law 

with finite time convergence was proposed based on variable structure control. Higher order sliding mode 

based on integral sliding mode control method was used to design the proposed finite time convergent 

guidance law under which the line-of-sight angular rate converges to zero in finite time. The new guidance 
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law is also robust against highly maneuvering targets. Finally, the superiority of the proposed method was 

substantiated by simulation results in comparison with terminal sliding mode guidance law.  
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