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Abstract– In this paper, a new method is investigated for model order reduction of high order 

systems based on moment matching technique. In this method, at first, full order model is 

expanded by Legendre wavelet function which is included in orthogonal functions. A suitable 

fixed structure model is considered as reduced order model whose parameters are unknown. These 

unknown parameters are determined using Harmony Search (HS) algorithm by minimizing the 

errors between the l first coefficients of Legendre wavelet expansion of full and reduced systems. 

The Routh criterion is applied for specifying the stability conditions. Therefore, the stability 

condition is considered as constraints in optimization problem. To present the ability of the 

proposed method, four test systems are introduced. The obtained results are compared with other 

conventional techniques such as Balanced Truncation (BT) method and Hankel Singular Value 

(HSV) method. The obtained results show the proposed approach performs very well with respect 

to other reduction methods.          
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1. INTRODUCTION 
 

Various methods are reported in the literature for order reduction in time domain and frequency domain. 

Model reduction was started by Davison in 1966 [1] and followed by Chidambara by suggesting several 

modifications to Davison’s approach [2-4]. After that different approaches were proposed such as: 

dominant pole retention [5], Routh approximation [6], Hurwitz polynomial approximation [7-8], stability 

equation method [9-10], moments matching [11-l4], continued fraction method [15-17], Pade 

approximation [18], etc. 

The issue of optimality in model reduction was considered by Wilson [19-20] who suggested an 

optimization approach based on minimization of the integral squared impulse response error between the 

full and reduced-order models. This attempt was continued by other researches through other approaches 

[21-24].    

In 1981 [25], the controllability and observability of the states was considered in model reduction by 

Moore. The suggested approach suffered from steady state errors but the stability of the reduced model 

was assured if the original system was also stable [26]. Furthermore, the concept of H∞, H2, L2 and L∞ was 

used in model reduction [27-30]. 

In the past decade, one of the most promising research fields has been “Evolutionary Techniques”, an 

area utilizing analogies with nature or social systems [31-32]. The evolutionary techniques such as Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA) and Harmony Search (HS) algorithm are used 

for order reduction of systems [33-35]. In these approaches, the reduced order model's parameters are 
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achieved by minimizing a fitness function which is often Integral Square Error (ISE), Integral Absolute 

Error (IAE), 2H  norm or H  norm [36-38]. 

In this paper a new alternative method is used for order reduction via Legendre wavelets function. 

Wavelet theory [39] has been applied in a wide range of engineering science; particularly, in signal 

analysis for waveform representation and segmentations, identification, optimal control and many other 

applications [40-43]. Wavelets permit the accurate representation of a variety of functions and operators.  

In the proposed method, the full order system is expanded by Legendre wavelets function and then 

the l first coefficients of Legendre wavelets expansion are obtained. A desired fixed structure for reduced 

order model is considered and a set of parameters are defined whose values determine the reduced order 

system. These unknown parameters are determined using HS algorithm by minimizing the errors between 

the l first coefficients of Legendre wavelets expansion of full and reduced systems. To satisfy the stability, 

Routh criterion is applied as it is used in [35] where it is stated in optimization problem as constraints and 

subsequently, optimization problem is converted to a constrained optimization problem. Four test systems 

are reduced by the proposed method and compared with those available in the literature to show the 

accuracy of the proposed method. 

To make a proper background, Legendre wavelets function and harmony search algorithm are briefly 

explained in Sections 2 and 3, respectively. The proposed method is explained in Section 4. The ability of 

the proposed approach is shown in Section 5. The paper is concluded in Section 6. 

 

2. LEGENDRE WAVELETS 

Wavelets have been successful in approximating the solution of different types of systems. They constitute 

a family of functions constructed from dilation and translation of a single function called the mother 

wavelet  x .  

Legendre wavelets    ,
ˆ, , ,n m t n k m t  are defined as follows [44]:  

   2

,

ˆ ˆ1 1 1
ˆ2 2 ,

2 2 2

0                         ,

k

k
m k k

n m

n n
m P t n t

t

otherwise



  
    

 



                                          (1) 

1 ˆ0,1,2, , 1   , 1,2, ,2     , 0,1,2,    , 2 1km M n k n n       

where 

 

 

     

0

1

1 1

1  

2 1
      1,2,3,

1 1
m m m

P t

P t t

m m
P t tP t P t m

m m
 





   
     

    

                              (2) 

A function     2 0,1f t L  can be approximated as:  
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where     , ,,n m n mC f t t   , in which .,.   denotes the inner product as: 

       
1

, , ,

0

, ,n m n m n mC f t t f t t dt                                                (4) 

Equation (3) can be written in a matrix form as: 
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   Tf t C t                                                                    (5) 

or  

   Tf t t C                                                                    (6) 

where C  and  t  are 12 1k M   matrices which are given by:  

1 11,0 1,1 1, 1 2,0 2, 1 2 ,0 2 , 1k k
T

M M M
C c c c c c c c   

 
 

 

               1 11,0 1,1 1, 1 2,0 2, 1 2 ,0 2 , 1k k

T

M M M
t t t t t t t t          

 
 

 

By determining the elements of matrices C and  t , the full order model can be expanded as a Legendre 

wavelet function.  

The moment matching methods, the Krylov subspace methods [45], belong to the Projection based 

model order reduction (MOR) methods. These methods are applicable to non-parametric linear time 

invariant systems [46].   

The transfer function is expanded by Legendre wavelets into a power series at an expansion point 

around s = 0. The moments of a function are defined as the coefficients of the Legendre wavelets 

expansion around a given point. The goal in moment-matching model reduction is the construction of a 

reduced order system where the moments of the reduced order model match the moments of the original 

system.  

 

3. HARMONY SEARCH ALGORITHM 

HS is based on natural musical performance, a process that searches for a perfect state of harmony. The 

harmony in music is analogous to the optimization solution vector, and the musician’s improvisations are 

analogous to local and global search schemes in optimization techniques. The HS algorithm does not 

require initial values for the decision variables and uses a stochastic random search that is based on the 

harmony memory considering rate and the pitch adjusting rate.  

In general, the HS algorithm works as follows [47- 48]: 

Step 1. Initialization: Initial population is produced randomly within the range of the boundaries of the 

decision variables. The optimization problem can be defined as: 

Minimize ( )f x subject to iL i iUx x x   ( 1,2, , )i N  where iLx  and iUx  are the lower and upper 

bounds for decision variables.  

The HS algorithm parameters are also specified in this step. They are the harmony memory size 

(HMS) or the number of solution vectors in harmony memory, harmony memory considering rate 

(HMCR), distance bandwidth (bw), pitch adjusting rate (PAR), and the number of improvisations (K), or 

stopping criterion.  K is the same as the total number of function evaluations. 

Step 2.  Initialize the harmony memory (HM). The harmony memory is a memory location where all the 

solution vectors (sets of decision variables) are stored. The initial harmony memory is randomly generated 

in the region  ,iL iUx x  ( 1,2, , )i N . This is done based on the following equation:  

    1,2, ,
j

x x rand x x j HMSiL iU iLi
                            (7) 

where  rand is a random from a uniform distribution of [0,1]. 

Step 3. Improvise a new harmony from the harmony memory.  Generating a new harmony xi
new

 is called 

improvisation where it is based on 3 rules: memory consideration, pitch adjustment and random selection.  

First of all, a uniform random number R is generated in the range [0, 1]. If R is less than HMCR, the 

decision variable xi
new

 is generated by the memory consideration; otherwise, xi
new

 is obtained by a random 

http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Projection_based_MOR
http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Projection_based_MOR
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selection. Then, each decision variable xi
new

 will undergo a pitch adjustment with a probability of PAR if it 

is produced by the memory consideration. The pitch adjustment rule is given as follows: 

new newx x R bw
i i

                                                          (8) 

Step 4. Update harmony memory. After a new harmony vector newx is generated, the harmony memory 

will be updated. If the fitness of the improvised harmony vector  1 2, , ,new new new new
Nx x x x is better 

than that of the worst harmony, the worst harmony in the HM will be replaced with newx  and become a 

new member of the HM. 

Step 5. Repeat steps 3 and 4 until the stopping criterion (maximum number of improvisations K) is met. 

The optimum design algorithm using HS is sketched basically as shown in Fig 1. 

Initialize HS parameters

Initialize HM

Improvise a new harmony

Update HM

Termination 

   criteria
Program terminated

YESNO

 
Fig. 1.  Basic flowchart diagram for HS algorithm 

 

4. THE PROPOSED MODEL REDUCTION METHOD 

Consider an order n transfer function of SISO (stable single-input single-output) system as follows: 
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                                                (9) 

which ia  and ib
 
are constants.  

The aim is to find a reduced model of order r in which r is smaller than n while the reduced order 

model has the principal and important specifications of the full order system. The reduced order system 

can be presented such as:  
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...
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r r
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r r r r
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c s c s c
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s d s d s d
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 

  

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                                             (10) 

in which 
1 2, , , rc c c and 

21
, , , rd d d are unknown constants.  

To obtain the reduced model by the proposed method, at first, we expand the full order system based 

on Legendre wavelets function. Then we obtain the l first coefficients of Legendre wavelet expansion of 

original system which is shown by  0,1,2,3, ,iF i l . Then a desired fixed structure is considered for 

reduced order model as defined in Eq. (10) in which 21, , , rc c c and 
21

, , , rd d d  are unknown parameters 

of reduced order model that are found by HS. The purpose of the optimization is to obtain the best 

parameters for ( )
r

G s . Therefore, each harmony is a d -dimensional vector in which d is
 r rc d . Each 
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harmony is a solution to rG and for each solution (harmony), the Legendre wavelet expansion is obtained. 

Each harmony is evaluated by minimizing the following fitness function: 

   *

0

ˆ
l

i i

i

J F F


                        (11)     

in which, ˆ
iF  are the

 
coefficients of Legendre wavelet expansion of reduced order system. The algorithm 

searches for the best harmony until the termination criteria are met. At this stage the best parameters are 

given as parameters of reduced order model. 

Furthermore, the reduced model must be stable if the original system is stable. Therefore, the Routh 

criterion is applied to assure the stability. For specifying the stability conditions, following [35], the 

denominator polynomial of reduced order model in Eq. (10) can be shown as:  
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   
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             (12) 

which is constructed by taking the coefficients of the first two rows of the Routh array whereby the 

elements of its first column have the following entries: 

1 2 1 3 2 4 1 3 5 1 3 21, , , , , ,..., ...k k r rh h h h h h h h h h h h h                                          (13) 

where, k is equal to 1 for even r and k is equal to 0 for odd r.  

Comparing the entries of the array in Eq. (13) with 2 41, , ,...d d and those of the second row with 

1 3 5, , ,...d d d  gives Eq. (14):  

1 1

2 2 3

3 1 3 4

1 3 2

( ... )
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r k k r r

d h

d h h h

d h h h h
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

   

   



                                                  (14) 

Substituting the above equations in reduced order model's denominator, Eq. (12) is achieved. 

Therefore, the necessary and sufficient condition for all roots of the reduced system to be strictly in the 

left-half plane is  

1

2

0

0

0r

h

h

h







                                                                          (15) 

And subsequently  

1

2

0

0

0r

d

d

d







                                                 (16) 

Thus, to have an optimum stable reduced system, the reduced order model's parameters are 

determined by minimizing the following fitness function: 
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 
0

ˆ

  0        1, ,

l

i i
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j

J F F

subject to d for j r


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 


                                          (17)  

Therefore, the reduced order model is achieved such that the l first coefficients of Legendre wavelet 

expansion of the full order system are equal with the l first coefficients of Legendre wavelet expansion of 

reduced order model.   

The proposed method can be summarized in the following steps: 

Step 1: Obtaining the Legendre wavelet functions of the full order system in Eq. (9).  

Step 2: Considering a desire fixed structure for reduced order model as defined in Eq. (10), where 

1 2, , , rc c c  and 
21

, , , rd d d  are unknown parameters of reduced order model that are found in the next 

step.  

Step 3: Applying HS to find the unknown parameters. The goal of the optimization is to find the best 

parameters for ( )
r

G s . Therefore, each harmony is a d -dimensional vector in which d is c dr r . Each 

harmony is a solution to Gr  and for each solution (harmony), obtaining the Legendre wavelet functions. 

Evaluate each harmony using the objective function defined by equation (17) searching for the harmony 

associated with J best
 until the termination criterion is met. At this stage the best parameters are given as 

parameters of reduced order model. 

 

5. SIMULATION AND RESULTS 

In this section, we show the efficiency and accuracy of the proposed method by applying it on four test 

systems. To obtain a reduced-order model, a step-by-step procedure is given for the first test system. 

Test system 1: The system given in [49] by Singh is the first system to be reduced where a procedure is 

considered to obtain the reduced system. The system is as follows:   

 
7 6 5 4 3 2

8 7 6 5 4 3 2

18 514 5928 36380 122664 222088 185760 40320

36 546 4536 22449 67284 118124 109584 40320

s s s s s s s
G s

s s s s s s s s

      


       
             (18) 

By using Legendre wavelet function and HS, the reduced-order model can be achieved by the steps 

below:  

Step 1: By choosing 20ft  , 2k  and 4M  , the Legendre wavelet expansion of the full order system 

in Eq. (18), based on section 2, can be written as:  
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       (19) 

Step 2: The full order system in Eq. (18) is going to be reduced to a third-order system with the following 

transfer function:  
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  1 2

2
1 2

r

c s c
G s

s d s d




 
                                                             (20) 

where ic and id are the unknown parameters of reduced order model.  

Step 3: To obtain the unknown parameters HS is applied. Since, the aim of the optimization is to find the 

best parameters for ( )rG s , each harmony is a d-dimensional vector in which 4d  . The HMS is selected 

to be 4, HMCR and evaluation number is set to be 0.9 and 1000, respectively. Each harmony is a solution 

to rG and for each solution (harmony), the Legendre wavelet expansion is obtained. Each harmony in the 

population is evaluated using the objective function defined by Eq. (17) searching for the best J until the 

termination criteria are met. At this stage the best parameters are given for reduced order model where the 

following reduced order model is obtained:  

  2

17.4996 5.5457

7.1578 5.5453
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                                                        (21) 

  The Legendre wavelet expansion of obtained reduced order model is as:  
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        (22) 

Comparing Eq. (19) and Eq. (22) shows that a good approximant is achieved for  G s .   

The step response of the full order system and that of the system with second-order reduced models 

are shown in Fig. 2. This figure shows that, the reduced order model is an adequate low-order model that 

retains the characteristics of full order model. Also, to show the efficiency of the proposed method, the 

step and frequency responses of the obtained reduced model are compared with those available in the 

literature. Figures 3-4, show the comparison of the results obtained with the one proposed by Singh [49], 

Optimal Hankel norm approximation (HSV) [50] and Balanced Truncation (BT) [50], respectively.  
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Fig. 2. Step response of full order and reduced order model by the proposed method for test system 1 
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Fig. 3. Step response of full order and reduced order model by the proposed method and  

other conventional methods for test system 1 
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Fig. 4. Frequency response of full order and reduced order model by the proposed  

method and other conventional methods for test system 1 
 

These figures show that the achieved results from the proposed method are very similar to original 

system compared to other methods, which will make the stability and performance characteristics of both 

systems be the same.  

Furthermore, comparison between some specifications such as steady state value, rise time, settling 

time and maximum overshoot are given in Table 1. Also, ISE criterion between the full order and reduced 

order models ( re y y  ) is given in Table 1. It is clearly seen that the specifications of reduced order 

model that is achieved by the proposed method are close to the specifications of original system.  

Table 1. Comparision of methods for test system 1 

 
Steady 

state 

Overshoot 

(%) 

Rise time 

(sec) 

Settling time 

(sec) 
ISE 

Original system 1 120 0.0569 4.82 - 

Legendre wavelet 1 122 0.0577 5.03 0.0016
 

BT 0.94 134 0.0529 5.97 0.1200 

HSV 0.944 132 0.0556 5.48 0.1109 

Proposed by Singh 1 126 0.071 4.68 0.0101 
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Also, the plot of re y y  is illustrated in Fig. 5 for reduced systems. This figure shows that the 

obtained error by the proposed method in this paper is less than other methods.  
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Fig. 5. The plot of e y y r   for the full order and reduced systems by the 

 proposed method and other methods for test system 1 

Test system 2: In [51], a procedure is presented to obtain a reduced order system by Mukherjee. To 

compare the proposed method with the proposed method by Mukherjee, the system given in [51] is 

adopted which is a ninth-order system:  

 
4 3 2

 9 8 7 6 5 4 3 2

35 291 1093 1700

9 66 294 1029 2541 4684 5856 4620 1700
original system

s s s s
G s

s s s s s s s s s

   


        
      (23) 

Based on the explanations given for test system 1, the obtained reduced system by the proposed method is 

as follows:  

 
2

 3 2

0.4121 2.9431 5.2356

4.2602 7.7705 5.2356
Legendre Wavelet

s s
G s

s s s

 


  
                                 (24) 

The step response of the original system and the obtained reduced model are shown in Fig. 6. In this 

figure, the responses of the system with third-order primary reduced models obtained by other methods are 

also included for comparison. Also, the plot of re y y  is given in Fig. 7.  
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Fig. 6. Step response of full order and reduced order model by the proposed method 

 and other conventional methods for test system 2 
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Fig. 7. The plot of e y y r   for the full order and reduced systems by the  

proposed method and other methods for test system 2  

Furthermore, maximum overshoot, rise time, settling time, steady state value, ISE criterion are shown 

in Table 2. Once again, the results obtained confirm that a satisfactory approximation has been achieved. 

It is clearly seen that the specifications of reduced order model that is achieved by the proposed method 

are close to the specifications of original system and better than other methods. 

Table 2. Comparision of methods for test system 2 

 
Steady 

state 

Overshoot 

(%) 

Rise time 

(sec) 

Settling time 

(sec) 
ISE 

Original system 1 0 1.54 3.36 - 

Legendre wavelet 1 0 1.73 3.69 0.0098
 

BT 1.1 0 2.11 6.62 0.0734 

HSV 1.12 0 1.93 6.11 0.1479 

Proposed by Mukherjee 1 0 2.02 4.32 0.0131 

Test system 3: The third test system to be reduced is the following 9
th
 order Boiler System [38]:  

 

0.910 0 0 0 0 0 0 0 0

0 4.449 0 0 0 0 0 0 0

0 0 10.262 571.479 0 0 0 0 0

0 0 571.479 10.262 0 0 0 0 0

( ) 0 0 0 0 10.987 0 0 0 0

0 0 0 0 0 15.214 11.622 0 0

0 0 0 0 0 11.622 15.214 0 0

0 0 0 0 0 0 0 89.874 0

0 0 0 0 0 0 0 0 502.665

      

x t x t

 
 


 
 
 

  
  
 

 
  
 

 
  

4.336

3.691

10.141

1.612

 ( )                                                                                                             16.629

242.476

14.261

13.672

82.187

u t

 
 


 
 
 
 

 
 
 
 
 
 
 
 

                 

    (25) 
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 ( ) 0.422 0.736 0.00416 0.232 0.816 0.715 0.546 0.235 0.080 ( )y t x t                  (26) 

Based on the explanations given for test system 1, the obtained reduced system by the proposed 

method is as follows:  

 
2

 3 2

151.34 4388.22 4787.63

31.96 426.04 376.41
Legendre Wavelet

s s
G s

s s s

 


  
                                       (27) 

The comparison of the proposed method with the one proposed by Salim in [38] and BT method and 

HSV method are shown in Figs. 8-9 and Table 3, which illustrate a better performance of the proposed 

method.  

Test system 4: The last test system considered for model reduction is a 6
th
 order discrete-time system [52] 

as follows:  

 
6 5 4 3 2

6 5 4 3 2

0.3277 0.9195 1.038 0.5962 0.1618 0.00698 0.005308

1.129 0.2889 0.08251 0.04444 0.00476
Original

z z z z z z
G z

z z z z z z

     


    
             (28) 
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Fig. 8. Step response of full order and reduced order model by the proposed method and  

other conventional methods for test system 3  
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Fig. 9. The plot of e y y r   for the full order and reduced systems by the proposed  

method and other methods for test system 3  

 

Table 3. Comparision of methods for test system 3 

 
Steady 

state 
Overshoot (%) 

Rise time 

(sec) 

Settling time 

(sec) 
ISE 

Original system 12.7 0 0.543 2.28 - 

Legendre wavelet 12.7 0 0.557 2.26 6.32×10
-4 

BT 12.7 0 0.539 2.24 0.0016 

HSV 12.7 0 0.591 2.52 0.0859 

Proposed by Salim 12.7 0 0.53 2.22 0.0139 
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In this paper, for model reduction of discrete systems, at first, the discrete time system is transformed 

to continuous time system by using bilinear Tustin transformation [53]. The sampling time of 

transformation is 1s.  

 
5 4 3 2

6 5 4 3 2

15.6 124.2 510.3 1166 959.3

21 175 735 1624 1764 720
Tustin

s s s s s
G s

s s s s s s

    


     
                                    (29) 

 Then, the continuous time system is reduced by the proposed method. Based on the explanations 

given for test system 1, the obtained reduced system by the proposed method is as follows:  

2

 3 2

6.0008 19.2131

9.4999 22.2610 14.4177
Legendre wavelet

s s
G

s s s

 


  
                                          (30) 

Figures 10-11 and Table 4 are the comparison with the proposed method and the one proposed by 

Narain [52], BT and HSV methods. The results show the accuracy and better performance of the proposed 

method. 
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Fig. 10. Step response of full order and reduced order model by the proposed  

method and other conventional methods for test system 4 
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Fig. 11. The plot of e y y r   for the full order and reduced systems by the proposed  

method and other methods for test system 4 
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Table 4. Comparision of methods for test system 4 

 
Steady 

state 
Overshoot (%) 

Rise time 

(sec) 

Settling time 

(sec) 
ISE 

Original system 1.33 0 2.39 4.13 - 

Legendre wavelet 1 0 2.44 4.07 1.80×10
-4 

BT 1.1 0 2.37 4 1.87×10
-4 

HSV 1.12 0 2.38 4.04 2.58×10
-4 

Proposed by Narain 1 0 2.5 4.27 7.58×10
-4 

 

Similarly transforming the continuous-time reduced model to the discrete-time reduced model using 

the bilinear Tustin transformation and taking sampling time 1s can be written as: 

3 2

  3 2

0.3356 0.6255 0.3968 0.1068

0.2456 0.1455 0.0009
Discrete Legendre wavelet

z z z
G

z z z

  


  
                                 (31) 

Figure 12 shows step response of full order (original) discrete-time system and the reduced order 

discrete-time system based on the proposed method and other methods. 
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Fig. 12. Step response of full order of discrete-time model and reduced order of discete-time model by  

the proposed method and other conventional methods for test system 4 

 

6. CONCLUSION 

In this paper, an approach based on Legendre wavelet expansion for order reduction is investigated. To 

present the accuracy and efficiency of the method, four test systems are reduced by the proposed method. 

The proposed method is compared with some conventional order reduction techniques where the obtained 

results show that the proposed approach has high accuracy with respect to conventional order reduction 

methods.  

 

REFERENCES 
 

1. Davison, E. J. (1966). A method for simplifying linear dynamic systems. IEEE Trans. Autom. Control AC., Vol. 

11, pp. 93–101.    

2. Chidambara, M. R. (1967). Further comments by M.R. Chidambara, IEEE Trans. Autom. Control AC., Vol. 1, 

pp. 799–800.  

3. Davison, E. J. (1967). Further reply by E.J. Davison. IEEE Trans. Autom. Control AC., Vol. 12, p. 800. 

4. Chidambara, M. R. (1969). Two simple techniques for the simplification of large dynamic systems. Proc. 1969 

JACC, pp. 669–674.   



H. Nasiri Soloklo et al. 

 

IJST, Transactions of Electrical Engineering, Volume 39, Number E1                                                                            June 2015 

52 

5. Elrazaz, Z. & Sinha, N. K. (1979). On the selection of dominant poles of a system to be retained in a low-order 

model. IEEE Trans. Autom. Control AC., Vol. 24, pp. 792-793.  

6. Hutton, M. & Friedland, B. (1975). Routh approximations for reducing order of linear, time-invariant systems. 

IEEE Trans. Autom. Control AC., Vol. 20, No. 3, pp. 329–337.     

7. Appiah, R. K. (1978). Linear model reduction using Hurwitz polynomial approximation. Int. J. Control, Vol. 28, 

pp. 477-488.  

8. Appiah, R. K. (1979). Pade methods of Hurwitz polynomial with application to linear system reduction. Int. J. 

Control, Vol. 29, pp. 39-48.   

9. Chen, T. C., Chang, C. Y. & Han, K. W. (1979). Reduction of transfer functions by the stability equation 

method. J. Franklin Inst., Vol. 308, pp. 389-404.  

10. Chen, T. C., Chang, C. Y. & Han, K. W. (1980). Model reduction using the stability equation method and the 

continued fraction method. Int. J. Control, Vol. 21, pp. 81-94.   

11. Gibilaro, L. G. & Lees, F. P. (1969). The reduction of complex transfer function models to simple models using 

the method of moments. Chem. Eng. Sci., Vol. 24, pp. 85–93.    

12. Lees, F. P. (1971). The derivation of simple transfer function models of oscillating and inverting process from 

the basic transformed equation using the method of moments. Chem. Eng Sci., Vol. 26, pp. 1179-1186.  

13. Shih, Y. P. & Shieh, C. S. (1978). Model reduction of continuous and discrete multivariable systems by 

moments matching. Computer & System. Eng., Vol. 2, pp. 127-132.   

14. Zakian, V. (1973). Simplification of linear time-variant system by moment approximation. Int. J. Control, Vol. 

18, pp. 455-460.  

15. Chen, C. F. & Shieh, L. S. (1968). A novel approach to linear model simplification. Int. J. Control, Vol. 8, pp. 

561–570.     

16. Chen, C. F. (1974). Model reduction of multivariable control systems by means matrix continued fractions. Int. 

J. Control, Vol. 20, pp. 225-238.  

17. Wright, D. J. (1973). The continued fraction representation of transfer functions and model simplification. Int. J. 

Control, Vol. 18, pp. 449-454.  

18. Shamash, Y. (1974). Stable reduced-order models using Pade type approximation. IEEE Trans. Autom. Control 

AC, Vol. 19, 5, pp. 615-616.  

19. Wilson, D. A. (1970). Optimal solution of model reduction problem. Proc. Institution of Electrical Engineers, 

Vol. 117, No. 6, pp. 1161-1165.  

20. Wilson, D. A. (1974). Model reduction for multivariable systems. Int. J. Control, Vol. 20 pp. 57–64.    

21. Obinata, G. & Inooka, H. (1976). A method of modeling linear time-invariant systems by linear systems of low 

order. IEEE Trans. Autom. Control AC, Vol. 21, pp. 602–603.  

22. Obinata, G. & Inooka, H. (1983). Authors reply to comments on model reduction by minimizing the equation 

error. IEEE Trans. Autom. Control AC, Vol. 28, pp. 124–125.    

23. Eitelberg, E. (1981). Model reduction by minimizing the weighted equation error. Int. J. Control, Vol. 34, 6, pp. 

1113-1123.  

24. El-Attar, R. A. & Vidyasagar, M. (1978). Order reduction by L1 and L∞ norm minimization. IEEE Trans. Autom. 

Control AC, Vol. 23, No. 4, pp. 731–734.  

25. Moore, B. C. (1981). Principal component analysis in linear systems: controllability, observability and model 

reduction. IEEE Trans. Autom. Control AC, Vol. 26, pp. 17–32.    

26. Pernebo, L. & Silverman, L. M. (1982). Model reduction via balanced state space representation. IEEE Trans. 

Autom. Control AC, Vol. 27, No. 2, pp. 382–387.  

27. Kavranoglu, D. & Bettayeb, M. (1993). Characterization of the solution to the optimal H∞ model reduction 

problem. Syst. Control Letters, Vol. 20, pp. 99–107.   

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5247218


Model order reduction based on… 

 

June 2015                                                                            IJST, Transactions of Electrical Engineering, Volume 39, Number E1      

53 

28. Zhang, L. & Lam, J. (2002). On H2 model reduction of bilinear system. IEEE Trans. Autom. Control AC, Vol. 

38, pp. 205–216.  

29. Krajewski, W., Lepschy, A., Mian, G. A. & Viaro, U. (1993). Optimality conditions in multivariable L2 model 

reduction. J. Franklin Inst., Vol. 330, No. 3, pp. 431–439.   

30. Kavranoglu, D. & Bettayeb, M. (1994). Characterization and computation of the solution to the optimal L∞ 

approximation problem. IEEE Trans. Autom. Control AC, Vol. 39, pp. 1899–1904.  

31. Mohammadi, S. A., Akbari, R. & Mohammadi, S. H. (2012). An efficient method based on ABC for optimal 

multilevel thresholding. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 

Vol. 36, No. 1, pp. 37-49.  

32. Arab Khedri, P., Eftekhari, M. & Maazallahi, R. (2013). Comparing evolutionary algorithms on tuning the 

parameters of fuzzy wavelet neural network. Iranian Journal of Science and Technology, Transactions of 

Electrical Engineering, Vol. 37, No. 2, pp. 193-198. 

33. Parmar, G., Mukherjee, S. & Prasad, R. (2007). Reduced order modeling of linear dynamic systems using 

particle swarm optimized eigen spectrum analysis. Int. J. Computer and Mathematic Sci., Vol. 1, No. 1, pp. 45-

52.   

34. Parmer, G., Prasad, R. & Mukherjee, S. (2007). Order reduction of linear dynamic systems using stability 

equation method and GA. World Academy of Science, Engineering and Technology, Vol. 26, pp. 72-378.  

35. Nasiri Soloklo, H. & Maghfoori Farsangi, M. (2012). Multi-objective weighted sum approach model reduction 

by Routh-Pade approximation using harmony search. Turkish journal of Electrical Engineering and Computer 

Science, Vol. 21, pp. 2283-2293.    

36. Panda, S., Yadav, J. S., Padidar, N. P. & Ardil, C. (2009). Evolutionary techniques for model order reduction of 

large scale linear systems. Int. J. Applied Sci. Eng. Technology, Vol. 5, pp. 22-28.  

37. Parmar, G., Pandey, M. K. & Kumar, V. (2009). System order reduction using GA for unit impulse input and a 

comparative study using ISE and IRE. 9th Int. Conf. on Advances in Computing, Communications and Control, 

Mumbai, India.  

38. Salim, R. & Bettayeb, M. (201). H2 and H∞ optimal reduction using genetic algorithm. J. Franklin Inst., Vol. 

348, pp. 1177- 1191.   

39. Daubechies, I. (1992). Ten lectures on wavelets. SIAM, Philadelphia. 

40. Heydari, M. H., Hooshmandasl, M. R. & Mohammadi, F. (2014). Legendre wavelets method for solving 

fractional partial differential equations with Dirichlet boundary conditions. Applied Mathematics and 

Computation, Vol. 234, 267-276.    

41. Sharif, H. R., Vali, M. A., Samavat, M. & Gharavisi, A. A. (2011). A new algorithm for optimal   control of 

time-delay systems. Applied Mathematical Sciences, Vol. 5, pp. 595 – 606.  

42. Wang, X. T. (2008). Numerical solution of time-varying systems with a stretch by general Legendre wavelets. 

Applied Mathematics and Computation, Vol. 198, pp. 613–620.      

43. Jafari, H., Yousefi, S. A., Firoozjaee, M. A., Momani, S. & Khalique, C. M. (2011). Application of Legendre 

wavelets for solving fractional differential equations. Computers & Mathematics with Applications, Vol. 62, No. 

3, pp. 1038- 1045.  

44. Razzaghi, M. & Yousefi, S. (2001). Legendre wavelets method for the solution of nonlinear problems in the 

calculus of variations. Mathematical and Computer Modelling, Vol. 34, pp. 45-54.  

45. Freund, R. W. (2003). Model reduction methods based on Krylov subspaces. Acta Numerica, Vol .12, pp. 267-

319.  

46. Ionescu, T. C., Astolfi, A. & Colaneri, P. (2014). Families of moment matching based, low order approximations 

for linear systems. Systems & Control Letters, Vol. 64, pp. 47-56.  

47. Geem, Z. W., Kim, J. H. & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. 

Transaction of the Society for Modeling and Simulation International, Vol. 76, No. 2, pp. 60–68.   

http://www.sciencedirect.com/science/article/pii/S0096300314002860
http://www.sciencedirect.com/science/article/pii/S0096300314002860
http://www.sciencedirect.com/science/article/pii/S0898122111003257
http://www.sciencedirect.com/science/article/pii/S0898122111003257
http://dx.doi.org/10.1017/S0962492902000120
http://www.sciencedirect.com/science/article/pii/S0167691113002338
http://www.sciencedirect.com/science/article/pii/S0167691113002338


H. Nasiri Soloklo et al. 

 

IJST, Transactions of Electrical Engineering, Volume 39, Number E1                                                                            June 2015 

54 

48. Nasiri Soloklo, H. & Maghfoori Farsangi, M. (2014). Order reduction by minimizing integral square error and 

H∞ norm of error. Journal of Advances in Computer Research, Vol. 5, No. 1, pp. 29-42.   

49. Singh, J., Chatterjee, K. & Vishwakarma, C. B. (2014). System reduction by eigen permutation algorithm and 

improved Pade approximations. International Journal of Mathematical, Computational, Physical and Quantum 

Engineering, Vol. 8, No. 1, pp. 180-184.  

50. Skogestad, S. & Postethwaite, I. (1996). Multivariable feedback control, analysis and design. John Wiley Press 

(1996).  

51. Mukherjee, S. & Satakhshi, R. C. (2005). Model order reduction using response-matching technique. Journal of 

Franklin Institute, Vol. 342, pp. 503-519.    

52. Narain, A., Chandra, D. & Ravindra, K. S. (2013). Model order reduction of discrete-time systems using fuzzy 

C-means clustering. World Academy of Science, Engineering and Technology, Vol. 7, pp. 1256- 1263.  

53. Okuyama, Y. (2013). Discrete control systems. Springer.  

  


