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Abstract– In this paper the problem of minimizing the total transmitting power subject to a fixed 

total bit rate in OFDM systems is considered. Upper bounds on transmitting power and bit rate of 

each subcarrier can also be taken into account. In practice, the number of bits of each subcarrier 

should be integer and nonnegative. In this paper an analytical optimal solution is derived for the 

case of assuming the bits to be integer. Then, the solution is extended for the case of nonnegative 

integer bits and the cases in which we have constraints on the maximum power and bit rate of each 

subcarrier. In an OFDM system with N  subcarriers the complexity of computing the proposed 

analytical solution is ( )O N  which is lower than the computational complexity of existing 

algorithms. In addition to the mathematical proofs, computer simulations confirm that the 

proposed analytical solution is optimal and faster than the existing algorithms.           

 

Keywords– Optimum bit loading, discrete multi-tone (DMT) modulation, discrete optimization, orthogonal 

frequency division multiplexing (OFDM)  

 

1. INTRODUCTION 
 

Orthogonal frequency division multiplexing (OFDM) is one of the most advantageous methods for digital 

data communications. In an OFDM system, data is transmitted through some orthogonal subcarriers. 

Compared to a single carrier communication system, an OFDM system requires lower transmission power 

due to lower bit rate at each subcarrier. Moreover, OFDM signaling is a very efficient technique for 

reducing inter-symbol interference (ISI) in channels with severe ISI. In a practical OFDM system, the 

attenuations and the noise powers at different subcarriers are not essentially equal and consequently to 

achieve the required bit error rate (BER) at each subcarrier, the bit rate and power of subcarriers may be 

different.  

In this paper we consider the optimization problem of minimizing the total transmit power subject to 

a target total bit rate and bit error rate (BER) and upper bounds on transmitting power and bit rate of each 

subcarrier and propose an analytical method for solving this problem.  

In practice, the number of bits of each subcarrier should be integer and nonnegative. Thus, integer 

optimization techniques should be used for solving the optimal bit loading problem. A common integer 

optimization algorithm for optimal bit loading is greedy algorithm. In a greedy algorithm, at each iteration 

one bit is allocated to the subcarrier that has the maximum decrease in required transmission power by 

receiving one extra bit. For example, in [1-7] greedy algorithms are proposed for the optimal integer bit 

loading in which the optimal solution is obtained by one-by-one bit loading. The computational 

complexity of these greedy algorithms are 2( )O N . 
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In [8], a modified greedy algorithm is proposed for optimal bit loading in which at the first step, the 

subcarriers are sorted based on their attenuations, and at the next steps the optimal bit loading is obtained 

by using greedy search in all possible bit switches. The complexity of this algorithm is 
2( log ( ))O N N . 

In [9], a couple of group-by-group bit loading algorithms are proposed for the integer bit loading 

problem. Complexity study in [9] shows that the group-by-group bit loading algorithms are 

2( log ( ))O N N  and have lower computational complexities compared to the existing optimal algorithms 

which have the ability to set constraints on the bit rate and transmitting power of each subcarrier. 

Many suboptimal algorithms are proposed for integer bit loading [10-14] aimed at reducing the 

computational complexity. However, as stated in [9], the complexity reduction in these algorithms is not 

significant and the order of computational complexity of these algorithms is not lower than that of the 

algorithm proposed in [9]. 

In this paper, an analytical solution is developed for the optimal bit loading in OFDM systems by 

using an analytical discrete optimization method and Lagrange multiplier analysis. Then, the analytical 

solution is extended for the cases of having constraints on the maximum power and bit rate of each 

subcarrier. The worst case computational complexity of the proposed analytical solution is ( )O N  which 

is lower than the complexity of existing algorithms. The computer simulations confirm the mathematical 

proofs which show that the proposed method is faster than the existing algorithms.  

In section 2, the formulation of bit loading problem is introduced and the related parameters are 

defined. In section 3, some mathematical tools that are used in this paper for solving the bit loading 

problem are introduced. In subsection 3-a, an analytical approach is introduced for finding minima and 

maxima of a discrete function including the global minimum/maximum. In subsection 3-b, Theorem 2 

introduces a sufficient condition for optimality of the solution of dual Lagrange problem (strong duality). 

Then, according to Theorem 2 it is shown that the solution of main problem can be found by solving the 

unconstrained problem (8) and finding the optimal Lagrange multiplier (proof of strong duality based on 

Theorem 2 is provided in Appendix A-C). In subsections 3-c and 3-d, a brief introduction of selection and 

bisection algorithms is brought. These algorithms are used to reduce the computational complexity of 

finding the solution of bit loading problem. In section 4, first the closed form solution of unconstrained 

Lagrange problem is found (relation (17) for OIBL problem and (18) for ONIBL problem). Then, the 

solution of dual problem is found. According to strong duality which is proved in section 3 and Appendix 

A-c, this solution is optimal. The main differences between the proposed algorithm and the existing ones 

are explained in subsection 4-a. The results of computer simulations are explained in section 5. 

The proofs of theorems, lemmas and the complexity of algorithms are provided in Appendix A. 

 

2. OPTIMUM BIT LOADING 

The aim of optimum bit loading (OBL) for an OFDM system with N  subcarriers is to manage the bit rate 

of each subcarrier so that the total transmission power is minimized and sum of the loaded bits is equal to 

the OFDM symbol size B . To achieve the desired bit error rate (BER), using the gap-approximation, the 

number of bits of the i th
 subcarrier is obtained as [15], [16] 

 

2

2 2
log 1

i

i i

i

H
b P



 
  
 
 

 (1) 

where iH  is the complex gain of channel, 
2

i  is the variance of the additive noise of channel, and   is a 

constant obtained from gap analysis in order to achieve the desired BER. The value of   is obtained in 

terms of BER as [17]: 

ln (5 ) /1.5BER    
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According to (1) the power of i th
 subcarrier can be written in terms of the number of bits of subcarrier as 

  
2

2
( ) 2 1ibi

i i

i

P b
H


   (2) 

Let 1 2[ , ,..., ]TNb b bb  be the bit loading vector. The problem can be formulated as 

 1 1

Minimize ( ) Subject to:

, 1,...,

N N

i i i

i i

i i

P b b B

b i N

 



 

 
b

D

 (3) 

It should be noted that in (3), the BER constraint is also considered because the value of   depends on the 

desired BER of each subcarrier and the effect of BER is included in the cost function of problem. In 

practice, since the number of bits is integer and nonnegative we have 
i

D . In this paper first we 

derive the solution of problem for i D  and name the corresponding problem as optimum integer bit 

loading (OIBL). Then we modify the solution for i

D  and name the problem optimum nonnegative 

integer bit loading (ONIBL). 

Sometimes, for power spectral density compatibility, the number of bits of each subcarrier is constrained 

to upper bounds as [18] 

 , 1,2,...,i ib u i N   (4) 

where the upper bound iu  is obtained from  

 

2

max 2 2
min , log 1

i

i

i

H
u b P



   
    

      

 (5) 

where P  is the maximum allowable transmission power of each subcarrier and maxb  is the maximum 

allowable number of bits of each subcarrier and .    denotes the floor function. Clearly, according to the 

constraint 
1

N

ii
b B


 , we must have 

1

N

ii
u B


 . 

 

3. DISCRETE OPTIMIZATION TOOLS 

a) Analytical discrete optimization approach 

In [19] we have proposed an analytical method for finding the local minima and maxima of a discrete 

function. Here, we repeat some parts of this method. 

 

Definition of Local Minimum / Maximum for a Discrete Function: 

Let [ ]f n  be a discrete function defined on D . We define 
*n  as a local minimum of [ ]f n  if 

*n , 
* 1n   and 

* 1n   are in D  and we have 
* *[ ] [ 1]f n f n   and 

* *[ ] [ 1]f n f n  . Similarly define 
*n  

as a local maximum of [ ]f n  if 
*n , 

* 1n   and 
* 1n   are in D  and we have 

* *[ ] [ 1]f n f n   and 
* *[ ] [ 1]f n f n  . 

 

Theorem 1: Suppose that [ ]f n  is a discrete function defined on the integer interval I   and ( )rf x  is 

a continuous real function defined on the connected interval rI   so that rI I  and at each integer 

point in rI  such as n   we have ( ) [ ]rf n f n  . Let 1 2, ,..., mx x x  be all the solutions of the equation 

( ) ( 1) 0r rf x f x   . The set A  consisting of the floors of all ix s ( 1,2, ,   )i m   plus integer 

( 1)ix  s (if any) contains all the local minima and maxima of [ ]f n . 
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Remark 1: The global minimum (maximum) of a discrete function defined on  1 2,n n  is a local 

minimum (maximum) or a boundary point ( 1n  or 
2n ). 

As a simple proof, if the global optimum is a boundary point, Remark 1 is satisfied. Otherwise, according 

to the definition of local optimums, the global optimum is a local optimum. 

Remark 2 : When ( )rf x  is a unimodal function, [ ]f n  is unimodal (has only one minimum or 

maximum) or has two successive minima (or two successive maxima) as 
*

1n  and 
*

1 1n   for which 
* *

1 1[ ] [ 1]f n f n  . 

b) Lagrange multiplier analysis 

Theorem 2: Consider the constrained optimization problem 

  Minimize ( ) Subject to : ( )G C c



x D

x x  (6) 

where x  is a N -dimensional vector and D  is a set of N -dimensional numbers (convex or nonconvex). 

Assume that 
*( )x  is the solution of the unconstrained problem: 

  Minimize ( ) ( )
D

G C



x

x x  (7) 

If a 
*   can be found that satisfies 

* *( ( ))C c x  then 
* *( )x  is the solution of (6).  

The proof of similar theorem in the case of inequality constraint ( ( )C cx ) is proposed in [20] but for 

the case of equality constraint (Theorem 2) we have provided the proof in Appendix A. 

According to Theorem 2, to solve the problem (3) at first we should find 

 1 1

Minimize ( ) ,

, 1,...,

N N

i i i

i i

i i

P b b

b i N


 

 
 

 

 

 
b

D

 (8) 

According to Remark 2, each ib  in (8) may have two optimal values for each  . We denote the optimal 

values of ib  at each   by the set function 
*{ ( )}ib  . 

The value of 
*  (the optimum  ) can be found by solving 

 
*

1

{ ( )}
N

i

i

b B


  (9) 

Then, the optimal solution of (3) can be obtained by substituting the optimal   in 
*{ ( )}ib  s. It can be 

shown that for OIBL and ONIBL problems, the condition of Theorem 2 is satisfied and the resultant 

solution from (8) and (9) is the same as that of (3) (see the proof of strong duality in Appendix A). 

c) Selection algorithm 

Let T  be a set of N  numbers. Define a rank for each member of T  so that the largest member has 

the rank 1, the smallest member has the rank N  and in the sorted list of members of T , the i th
 number 

of list has the rank i . However, to find the number with rank i  in the set T  it is not necessary to sort the 

list. 

Selection algorithm finds the number with rank i  in a set of N  numbers. Best selection algorithms are 

( )O N  while best sorting algorithms are ( log )O N N . Using a similar ( )O N  algorithm we can also 

find the subset of i  largest (or smallest) numbers of a set of N  numbers [21-23]. 

Some definitions: 

Define ( , )i T  as the i th 
large member (the number with rank i ) in the set T . 

Define ( , )iΦ T  as the subset of i  largest members of the set T  and define ( , )iΦ T  as the subset of i  

smallest members of the set T . 
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Define ( , , )i jΦ T  as the subset of members with ranks between i  and j  in the set T . We have 

 ( , , ) ( , ) ( 1, ),i j j i j i   Φ T Φ T Φ T  

Define ( , )x T  as the rank of x  in the set T . 

d) Discrete bisection approach 

Bisection algorithm is a well-known algorithm for finding the roots of real functions. Here we present 

a discrete version of this algorithm. Let [ ]f n  be a non-increasing discrete function and assume that we 

have 1[ ] 0f n  , 2[ ] 0f n   and 2 1 0n n N   . In the discrete version of algorithm our goal is to find 
*n  such that 

 
* *[ ] 0 and [ 1] 0f n f n    (10) 

Algorithm 1: Discrete Bisection Algorithm 

Step 1: Set 1 2( ) / 2n n n    . 

Step 2: If (10) is satisfied for 
*n n  then stop the algorithm and set 

*n n . Otherwise: 

If [ ] 0f n   set 1 1n n   and go to Step 1. 

If [ ] 0f n   set 2 1n n   and go to Step 1. 

Stop 

In worst case, this algorithm requires 2log ( ) 1N     comparison operations (see Appendix A). For non-

decreasing discrete functions, directions of inequalities in Algorithm 1 should be reversed. 

 

4. SOLVING THE PROBLEM 

In (8) only the i th 
term of each summation depends on ib  and the other terms are independent of ib . 

Thus, 
*{ ( )}ib   can be obtained from 

 
*{ ( )}  arg min{ ( , )}

i

i i
b

b G b 


  (11) 

where 

 ( , ) ( ) , 1,...,i i i iG b P b b i k     (12a) 

  
2

2
2 1 , 1,...,ibi

i

i

b i k
H





     (12b) 

According to (12), ( , )iG b   is a unimodal function of ib  for 0   and it is a strictly increasing function 

of ib  for 0  . Thus, for 0   we have 
*{ ( )} , ib i     and consequently *

1
{ ( )}

N

ii
b B


   . It 

means that we must have 
* 0  . Therefore, we consider 

*{ ( )}ib   only for 0  . 

Define the real function 

 ( , )  ( )i i i iG b P b b    (13) 

where ib  is a real variable and ( )i iP b  is a real function that at integer ib s is equal to ( )i iP b  (as 

declared in Theorem 1). To find 
*{ ( )}ib   according to Theorem 1 we have 

 ( , ) ( 1, )=0i iG b G b    

 ( ) ( ( 1) ( 1)) 0i i i i i iP b b P b b        

 ( ) ( 1)i i i iP b P b      (14) 
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For convenience we define 

 

2

2

i
i

i

C
H


  (15) 

Substituting (2) and (15) in (14) yields 

  12 2i ib b

iC     

 
1

2 ib

iC 
   

  2( ) log 2 /  ,   0i ib C      (16) 

According to Theorem 1 and (16), 
*{ ( )}ib   which is the minimum of the discrete function ( , )iG b  , for 

0   is obtained from 

 
     

 

2 2 2*

2

log 2 /  or log 2 / 1 if log 2 /  is integer 
{ ( )}

log 2 / otherwise

i i i

i

i

C C C
b

C

  




    
 

  

 (17) 

In an ONIBL problem in which we have the constraints  

 0 , 1,2,...,i ib u i N    

to achieve the target rate we must have 
0

N

ii
u B


 . 

Since ( , )iG b   is a unimodal function of ib  for 0  , if the minimum of ( , )iG b   is outside the 

interval 0 i ib u   then according to Remark 1 its minimum in  0, iu  is 0  or iu . A unimodal function 

is decreasing at the left-hand side of its minimum and increasing at the right-hand side of its minimum. 

Thus, in the ONIBL problem we have 

 

 

       

 

2

2*

2 2 2

2

0 if log 2 / 0

if log 2 /
{ ( )}

log 2 /  or log 2 / 1 if log 2 /  is an integer in 1, 1

log 2 / otherwise

i

i i i

i

i i i i

i

C

u C u
b

C C C u

C






  



    

     

 
    


  

 (18) 

In this case modify the definition of ( )ib   as 

 

 

 

 

2

2

2

0 if log 2 / 0

( ) if log 2 /

log 2 /  otherwise

i

i i i i

i

C

b u C u

C



 



    


     




 (19) 

It should be noted that since ( , )iG b   is a unimodal function, according to Theorem 1 and Remark 2, (17) 

and (18) are global minimum of ( , )iG b   in OIBL and ONIBL problems, respectively. Define 

 
1

( ) ( )
N

i

i

B b 


  (20) 
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* *

1

{ ( )} { ( )}
N

i

i

B b 


  (21) 

Typical plots of 
*{ ( )}ib  , 

*{ ( )}B  , ( )ib   and ( )B   are shown in Fig. 1 and Fig. 2. The optimum   

(
*  defined in subsection 3-b) can be found by solving  

 
*{ ( )}B B   (22) 

Substituting   in 
*{ ( )}ib  s, 

*

ib s are obtained. 

 
 

 
Some definitions: 

Define 
c  as a critical   of 

*{ ( )}ib   if 
*{ ( )}ib   has a jump and two different values at 

c . 

Define 
c  as a critical   of 

*{ ( )}B   if 
*{ ( )}B   has a jump and two or more than two values at 

c . 

Since 
* *

1
{ ( )} { ( )}

N

ii
B b 


 , each critical   of 

*{ ( )}ib  s is a critical   of 
*{ ( )}B  .  

Define 

Fig. 1. Typical diagram of *( )ib (solid) and ( )ib  (dotted) versus  

Fig. 2. Typical diagram of *( )B  (solid) and ( )B  (dotted) versus  
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  *

2( ) log 2 /i U ib C      (23a) 

 
* *

1

( ) ( )
N

U i U

i

B b 


  (23b) 

According to (17) and (18) when  2log 2 / iC  is non-integer we have 
* *( ) { ( )}i U ib b   and when it 

is integer (at critical  s) 
*( )i Ub   is equal to the upper value of 

*{ ( )}ib  . Similarly, 
*( )UB   at critical 

 s is equal to the largest value of 
*{ ( )}B  . 

For each  1,2,...,i N  and any integer j , define ,

c

i j  as a critical   at which ( )ib j  : 

  2( ) log 2 /i ib C j     

 
1

, 2c j

i j iC    (24) 

In the case of having the constraints 0 i ib u   and ( )ib   defined as (19), ,

c

i j  is only valid for 

0 ij u   and outside this interval 
*{ ( )}ib   does not have any critical  . 

We name any interval of   at which 
*{ ( )}B   is constant, as a step. A step of 

*{ ( )}B   may be a 

singular point as illustrated in Figs. 3 and 4 (see also Lemma 2). 

 

 

Fig. 4. Typical diagram of *( )B  about the critical point s  when m 

number of *( )ib s ( 2)m  have two values at s  

 

Fig. 3. Intersection of *( )B  with the horizontal line ( )f B  (a) In multi 

solution case the intersection is a singular point (b) In unique solution 

case the intersection is a nonsingular step 
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Lemma 1: For each  , 1,2,...,i k N  and any integer j , 
* ( )kb   at most has one critical   in the 

interval , 1 ,,c c

i j i j 
 .|| 

Lemma 2: The OIBL and ONIBL problems have the following properties: 

If the problem has more than one optimal solution, then the optimal   is a unique critical   as 
s  and all 

the solutions correspond to a singular point in the diagram of 
*{ ( )}B   and the number of solutions of the 

problem is 
m

l

 
 
 

 where m  is the number of 
*{ ( )}ib  s that has two values at 

s  ( 2m  ) and 
*( )s Ul B B  . If the problem has a unique solution then the solution occurs at a nonsingular step of 

*{ ( )}B   which contains infinite values of optimum   (see Fig. 3).|| 

Remark 3: It is obvious from (16)-(21) that 
*{ ( )}ib  , 

*{ ( )}B  , ( )ib   and ( )B   are non-increasing 

with  . 

Here, at first we solve the OIBL problem and then modify the solution for ONIBL. Let 
*  be an 

optimum   and 
*

ib  be an optimum value of 
ib  related to 

*  in a OIBL problem. We would have 

* *

*

, 1 ,i i

c c

i b i b
  


   because outside this interval 

* *{ ( )}i ib b  . First we assume that the solution of the 

OIBL problem occurs at a nonsingular step of 
*{ ( )}B   and all the ib s have one optimal value (see 

Lemma 2). In this case since 
* *{ ( )}B B  , * *

*

, 1 ,i i

c c

i b i b
  


   and 

*{ ( )}B   is non-increasing with  , 

we have *

*

,
( )

i

c

Ui b
B B  . Also, 

*{ ( )}B   has a jump at *, 1i

c

i b



 and we have *

*

, 1
( )

i

c

Ui b
B B


 . 

Therefore, 
*

ib  is the largest integer number like j  that satisfies 
*

,( )c

i j UB B  . i.e. 

 
* *

, ,

1

max : ( ) ( ) and
N

c c

i i j U n i j U

n

b j B b B j 


 
    

 
  (25) 

Substituting (22) and (23) in (25) yields 

  *

2

1

max : log / and
N

i i n

n

b j C C j B j


 
      

 
  

  2

1

1
max : log / and

N

i n

n

B
j j C C j

N N 

 
      

 
  (26) 

According to definition of floor, from (26) we conclude 

  *

2

1

1
log /

N

i i n

n

B
b C C

N N 

 
    

 
  (27) 

In the case that the optimal   is critical, the problem has more than one solution and according to Lemma 

2, in this case at least two numbers of ib s have two optimal values and in order to satisfy 
1

N

ii
b B


 , 

for l  number of ib s we should select the lower value and for the remaining ib s the upper values should 

be selected as declared in Lemma 2. Furthermore, (27) can be expressed in another form with lower 

computational complexity (see Theorem 3). 

Theorem 3: The optimal solution of OIBL problem is obtained from the following relation: 

 
2*

2

log ( ) 1

log ( )

i i

i

i

b C if
b

b C otherwise

      
 

    

P
 (28) 

where 
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 0
2 2, log ( ) log ( ) ,i i i

B B
b C C

N


 
      
 

 

 
0 2 0

1

log ( ) ,
N

i

i

B C B B B Nb


       

and  

  
1

( ,  )
N

i i
B 


 P Φ  

In the case that some of 
ib s have two optimal values, the corresponding i s are equal and P  which is 

the set of B  smallest members of  
1

N

n n



 contains multiple combinations and all the possible 

combinations of P  are acceptable in (28). This results in  m

l
 possible solutions for the problem where 

m  is the number of 
ib s that have two optimal values (have equal i s) and  0l Nb N B B    . || 

The set P  can be found by using the selection algorithm whose complexity is ( )O N . Since P  and 

b  are independent of i , the complexity of computing all 
*

ib s from (28) is altogether ( )O N . 

Now, we modify the analytical solution (28) for the ONIBL problem. 

Some Definitions: 

Define  1,2,...,NS  as the set of all subcarriers. 

For any set T  define T  as the number of members of T . 

Define 


S  as the set of subcarriers for which 
* 0ib   and define N   S . 

In the case that the number of bits is constrained to the upper bound as (4), define 
u

S  as the set of 

subcarriers for which 
*

i ib u  and define 
u uN  S . 

Define 
u  S S S  and 

uN N N   . 

Lemma 3: The solution of ONIBL problem for the subcarriers in S  is the solution of OIBL problem for 

the subcarriers in S  and symbol size 
u

i

i

B u



S

, i.e. the solution of the following problem 

 min ( ) Subject to: ,
u

i i i i i

i i i

P b b B u b
   

    
b

S S S

 (29) 

Lemma 4: Assume that in an ONIBL problem we have the constraints 0 i ib u   and let 
*  be an 

optimum   for the corresponding Lagrange unconstrained problem (problem (8)) for which the 

constraints 0 i ib u   are applied to iD . So for this problem: 

a) The optimal value of ib  is 
* 0ib   if and only if 

*

,1

c

i  . 

b) The optimal value of ib  is 
*

i ib u  if and only if 
*

, i

c

i u  .|| 

According to Lemma 4 we have 

  *

,1: c

ii    S  (30) 

  *

,:
i

u c

i ui   S  (31) 

Define 

  1

,1
1

N
c

i
i




Λ  (32) 

  ,
1i

N
u c

i u
i




Λ  (33) 

 
1 u Λ Λ Λ  (34) 



A fast analytical for optimum integer bit… 

 

June 2015                                                                            IJST, Transactions of Electrical Engineering, Volume 39, Number E1      

11 

  ,1( ) : c

ii    S  (35) 

  ,( ) :
i

u c

i ui   S  (36) 

 ( ) ( ) ( )u    S S S  (37) 

 ( ) ( )N    S  (38) 

 
2

( )

( ) log ( )i

i

B C





  
S

 (39) 

 
( )

( )
u

u

i

i

B u





 
S

      (40) 

To find an optimum  , we can solve (22) using the bisection algorithm, but to reduce the complexity, at 

first we solve ( )B B  . 

Define 
*  as the   at which ( )B B  . In the case that ( )B   has a jump such that ( )B B   

has no solution, define 
*  as the critical lambda c  at which lim ( )

c

B B
 




  and lim ( )
c

B B
 




 .  

Define 
*( )B B   , 

*( )u uB B  , 
*( ) S S , 

*( ) S S , 
*( )u u S S  and N   S . 

Lemma 5: In the ONIBL problem we have 

a) 

 
*( ) ( ) { ( )} ( ),B N B B         (41) 

b) 

 2( ) ( ) log ( 2 ) ( ) ( ),uB N B B            (42) 

c) If 
*  is not critical then 

 
 / 1* 2

uB B B N


   
   (43) 

d) 

 
* * * *1 { ( )} ,i i ib b b i     (44) 

To solve ( )B B  , at first we can find 


S  and 
u

S  and then find 
*  using (38)-(40) and (43). To 

find 


S  and 
u

S  according to (30)-(36) and definition of 


S  and 
u

S , we can apply Algorithm 1 to the 

discrete function [ ] ( ( , ))f n B n B Λ  and substitute 
*( , )n  Λ  in (35) and (36). Since at each 

iteration of Algorithm 1 n  is in the interval 1 2[ , ]n n , in order to reduce the complexity of computing 

( , )n   we can limit the set Λ  as 1 2( , , )n nΦ Λ , i.e. 

 1 1 2( , ) ( 1, ( , , ))n n n n n   Λ Φ Λ  (45) 

To decrease the complexity of computing ( ( , ))B n   and ( ( , ))uB n  , at each iteration of the 

Algorithm 1 for solving ( ( , )) 0B n B  Λ  we can compute only the difference of the summations 

from the previous iteration (denoted by B   and 
uB ). Based on the above explanations we come to the 

following low complexity algorithm.  

Algorithm 2: Solving ( )B B   and finding 


S , 
u

S  and 
*  

Step 1-  Set 1 1N  , 2N Λ  and Λ Λ  (defined in (34)), 
 S S , 

u S S , {} S , 0N    

0B   , 
1

N
u

i

i

B u


  and min( )  Λ . 
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Step 2-  Set 1 2( ) / 2N N N    , 
old  , 

1( 1, )N N    Λ , 
1( 2, )N N     Λ . 

If old   compute  ,1 ,1: andc c

i ii      S Λ ,  , ,: and
i i

u c c

i u i ui      S Λ  

and then set 
u


   S S S , 

u 


   S S S , 2 2log ( ) log ( )i i

i i

B C C
    

   
S S

, 

2log ( )
u

u

i

i

B C


  
S

, 
u u uB B B  , B B B    , N N  

       S S . 

If old   compute  ,1 ,1: andc c

i ii      S Λ ,  , ,: and
i i

u c c

i u i ui      S Λ  

and then set 
u 


   S S S , 

u


   S S S  2 2log ( ) log ( )i i

i i

B C C
    

   
S S

, 

2log ( )
u

u

i

i

B C


  
S

, 
u u uB B B  , B B B    , N N  

       S S . 

Similarly, in the above relations replace   by  
 to find ( )B   , ( )uB  

, and ( )N    

and save them as B  , 
uB 

, and N  , respectively. 

Compute 2( ) log ( 2 ) uB N B B       and 2( ) log ( 2 ) uB N B B          . 

Step 3-  If ( )B B   and ( )B B    go to step 4; otherwise: 

If ( )B B   set 2 1N N  , 1( , )N N Λ Φ Λ  and go to step 2. 

If ( )B B    set 1 1N N  , 2( , )N N  Λ Φ Λ  and go to step 2. 

Step 4-  Compute 
*  from (43). If 

*( )B B   (which means that the actual 
*  is critical) then set 

*   . Find 
u

S  and 


S  by substituting 
*   in (35)-(36). 

Stop 
 

The complexity of Algorithm 2 is ( )O N  (See Appendix A). 

According to (44) we have 
* * *{ ( )}i ib b   or 

* * *{ ( )} 1i ib b   . Thus, 


S  and 
u

S  can be found from 
   S S S  and 

u u u S S S  where 
S  is the set of subcarriers for which 

* * *{ ( )} 1 1i ib b     

and 
uS  is the set of subcarriers for which 

* * *{ ( )} 1i i ib b u    . Assume that 
* *{ ( )}d B B   . 

Since 
*{ ( )}ib  s and 

*{ ( )}B   are non-increasing with  , the subcarriers for which 
* * *{ ( )} 1i ib b    

are those d  subcarriers with larger * *,{ ( )} 1i

c

i b 



s.  

 

Algorithm 3: Finding 


S  and 
u

S   

Step 1- Using Algorithm 2 find 


S , 
u

S  and 
* . 

Step 2- Find 
* *{ ( )}ib  s for the subcarriers in S  from (18) and find 

* *{ ( )}B   from (21). If 
* *{ ( )}B B   then we have 

* *  ; set 
 S S  and 

u uS S . Otherwise set 
* *{ ( )}d B B    and find  

  * *,{ ( )} 1
,

i

c

i b
i

d








S

Λ Φ  

 * *

* *

,{ ( )} 1
: and{ ( )} 1 1

i

c

ii b
i b


 


    S Λ  

 * *

* *

,{ ( )} 1
: and{ ( )} 1

i

u c

i ii b
i b u


 


    S Λ  

then set 
   S S S  and 

u u u S S S . 
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Stop 

The worst case complexity of Algorithm 3 is ( )O N  (See Appendix A). According to Theorem 3 and 

Lemma 3 the solution of ONIBL problem is obtained as 

 
*

2

2

0 if 

                              if 

log ( ) 1 if and 

log ( ) otherwise

u

i

i

i i

i

i

u i
b

b C i

b C





 



 



 

     


   

S

S

S P
 (46) 

where 

 0
0 2log ( ) , , ,

u

u
u

i i

i i

B B B
B C B u b

N


 

 

  
        
 

S S

 

   0 , ,  :u

iB B B B N b B i            P Φ S  

Since 


S  and 
u

S  can be found by using Algorithm 3 which is ( )O N , the complexity of computing the 

analytical solution (46) for all subcarriers is altogether ( )O N . Thus, the proposed method has lower 

computational complexity compared to greedy and EBF/EBR algorithms. 

a) Comparison with the existing algorithms 

To explain what has happened in the proposed analytical method, the main differences between the 

proposed algorithm, greedy algorithm and EBF/EBA algorithm are explained below: 

a) In the proposed method, to find a group of subcarriers, the selection algorithm with the 

complexity of ( )O N  is used (in Algorithm 2), while the EBR/EBF algorithm for similar purpose 

uses the sorting algorithm whose complexity is ( log )O N N . 

b) The greedy algorithm allocates only one bit to one subcarrier at each iteration, while in EBR/EBF 

algorithm one bit is allocated to a group of subcarriers at each iteration, and in the proposed 

algorithm, after finding S 
, all the bits are allocated in one iteration using the analytical solution. 

Thus, the proposed algorithm has fewer iterations. However, in the proposed method first we need 

to find S 
. Fortunately, S 

 can be found by using a low computational complexity ( )O N  

algorithm (Algorithm 3).  

c) In greedy and EBR/EBF algorithms, at each iteration a search among all subcarriers is required 

for finding the subcarriers with lower transmission power, while in the proposed algorithm, in the 

stage of finding S 
, using the bisection algorithm the set of subcarriers is bisected at each 

iteration and the complexity of search decreases to half in the next iterations so that the total 

complexity would be ( )O N  (as shown in proof of algorithms 2 and 3 in Appendix A). 

d) Because of one-by-one bit loading in greedy algorithm, its complexity grows with B . Similarly, 

due to group-by-group bit loading the complexity of EBF/EBR algorithm grows with maxb  [9]. 

While in the proposed method by using the analytical solution, the complexity does not grow with 

B  and maxb . It should be noted that in [9], first maxb  is considered as a constant and the 

complexity of EBF/EBR algorithm is considered as 2( log )O N N  but in [9, Table I] it is shown 

that the complexity of EBF/EBR algorithm depends on maxb
 
too. 
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5. SIMULATION RESULTS 

A computer simulation is carried out to compare the analytical solution (46) with the greedy algorithm [1-

3] and EBF/EBR algorithm proposed in [9]. The results confirm that the proposed analytical solution (46) 

is optimal and the solutions obtained from (46) are the same as those obtained from the existing optimal 

algorithms. Some of the results for different values of 
1C  to NC , B  and N  are shown in Table 1. 

Table 1. Solutions of ONIBL problem obtained from analytical relation (46), EBF/EBR algorithm and the greedy 

algorithm in some cases. The results are the same for all three methods 

* *
1 Nb to b  

optP  (dB)
 

1u  to 
Nu  1C  to 

NC  B  N  

3, 3, 1, 1, 2, 1, 1, 2, 2, 2, 2, 5, 2, 3, 

1, 1 
26.08 - 

5.7, 4.7, 13.3, 15.2, 9.8, 14.0, 15.4, 

10.1, 12.5, 6.3, 7.5, 1.0, 12.6, 5.5, 13.3, 

15.5 

32 16 

5, 7, 6, 8, 7, 5, 6, 6, 5, 7, 6, 7, 5, 5, 

5, 6 
36.13 8 

6.3, 2.0, 5.0, 1.0, 2.7, 6.0, 5.0, 5.0, 6.1, 

2.1, 4.7, 2.1, 6.8, 5.6, 5.9, 5.3 
96 16 

3,  4,  5,  5,  3,  7,  3,  3,  2,  3,  6,  

3,  5,  4,  2,  5,  3,  4,  3,  6,  6,  3,  

6,  2,  4,  4,  4,  7,  3,  4,  3,  3 

36.97 - 

26.0, 13.3, 4.3, 5.2, 26.7, 1.0, 17.8, 

27.0, 31.0, 15.1, 2.3, 17.1, 6.4, 9.8, 

31.9, 5.4, 25.4, 11.2, 15.5, 3.3, 2.0, 

28.2, 2.3, 28.9, 12.9, 14.4, 11.5, 1.1, 

23.7, 11.6, 21.0, 25.3 

128 32 

7, 8, 7, 10, 10, 8, 9, 7, 10, 10, 8, 9, 

7, 8, 7, 8, 7, 7, 6, 7, 7, 10, 8, 10, 7, 

7, 7, 10, 7, 8, 8, 7 

61.83 10 

385.9, 276.9, 462.8, 43.3, 16.1, 247.0, 

81.8, 460.5, 1.0, 54.8, 240.3, 134.0, 

545.0, 211.7, 280.0, 152.4, 328.4, 

296.4, 557.8, 376.5, 482.3, 49.7, 241.0, 

23.6, 343.1, 416.8, 389.0, 34.8, 385.5, 

175.0, 198.5, 414.0 

256 32 

 

Another computer simulation is carried out to compare the running time required for computing (46) 

with the running time of greedy and EBF/EBR algorithms. The specifications of the computer used for 

running all algorithms are: CPU: Intel B970, dual core, 2.3 GHz; RAM: 4 GB; OS: Windows 7, 64-bit. 

The results for 32 to 1024N   with random values of iC s and iu s are shown in Figs. 5 and 6. The 

results confirm that the proposed optimal bit loading method is ( )O N  and is faster than greedy and 

EBF/EBR algorithms. 

 

 

Fig. 6. Average running time of EBF/EBR algorithm 

and proposed method for N=32 to 1024 
Fig. 5. Average running time of greedy 

algorithm for N=32 to 1024 
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Another computer simulation is performed to evaluate the required number of operations (including 

comparison, division, addition, shift and function operations) of all three methods for different values of 

N . The results of average number of required operations in 100 runs with 32 to 1024N  , 2B N  and 

0.5 , 1,2,...,i maxu b N i N    are shown in Fig. 7. 
 

 
The simulation results are compatible with the cmplexity analysis in [9]. These results also confirm the 

mathematical proofs which showed that the proposed method is ( )O N  and has lower computational 

complexity compared to greedy and EBF/EBR algorithms.  

 

6. CONCLUSION 

In this paper we derived an analytical solution for optimal integer bit loading in OFDM systems. At first, 

we obtained an analytical solution in terms of the Lagrange multiplier,  . Then we derived an analytical 

solution for integer bit loading. Finally, we modified the solution for nonnegative integer bit loading with 

upper constraints on the number of bits of each channel. The complexity of computing the analytical 

solution is ( )O N , which is less than the complexity of existing algorithms. In addition to the 

mathematical proofs, computer simulations confirmed that not only is the proposed analytical solution  

optimal but also it is faster than the greedy and EBF/EBR algorithms. 
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APPENDIX A 

Proof of Theorems, Lemmas and Complexity of Algorithms 

 

Proof of Theorem 1 

Assume that 
*n  is a local minimum of [ ]f n . We have 

 
* * * *[ ] [ 1] ( ) ( 1)r rf n f n f n f n      

 
* *( ) ( 1) 0 r rf n f n     (A1) 

Also we have 

 
* * * *[ ] [ 1] ( ) ( 1)r rf n f n f n f n      

 
* *( 1) ( ) 0 r rf n f n     (A2) 

Since ( )rf x  is a continuous function on the interval [ , ]rI a b , ( 1)rf x   is also a continuous function on the 

interval [ 1, 1]a b   and therefore ( ) ( ) ( 1)r rg x f x f x    is a continuous function on [ 1, ]a b . Assume 

that 1 1 2{ , 1,..., } rI n n n I   . According to definition of local minima (subsection 3-a) we have 
*

1 1 2{ 1, 1,..., 1} [ 1, 1]n n n n a b        and consequently 
* *[ , 1] [ 1, ]n n a b   . According to (A1) 

and (A2) we have 
*( ) 0 g n  and 

*( 1) 0 g n    and since ( )g x  is a continuous function, according to 

Bolzano's theorem it has at least one root in the interval 
* *[ , 1]n n  . Thus, the equation ( ) ( 1) 0r rf x f x    

has at least one solution in the interval 
* *[ , 1]n n  . If the solution(s) is (are) in the interval 

* *[ , 1)n n  , the floor 

of the solution(s) would be 
*n . If the solution is equal to 

* 1n  , since 
* 1n   is integer, 

* 1n   and 
* *( 1) 1n n    would be in the set A . Thus, in either case the set A  contains the local minimum 

*n . Similarly, 

it can be shown that if 
*n  is a local maximum of [ ]f n , the set A  contains 

*n  [19]. 

Proof of Theorem 2 

Since 
*( )x  is the minimum of  ( ) ( )G Cx x  in D  we have: 

 

* *

* *

( ( )) ( ( )) ( ) ( ),

( ( )) ( ) ( ) ( ( )),

G C G C

G G C C

   

   

    

    

x x x x x D

x x x x x D
 

If 
*( ( ))C c x  then we have 

 
*( ( )) ( ) ( ( ) ),G G C c     x x x x D  

For the vectors x  that satisfy the constraint of the problem, ( )C cx , we have  

 
*( ( )) ( ) 0,G G    x x x D  

 
*( ( )) ( ),G G   x x x D  

Thus 
*( )x  is the solution of the problem (6). 

Proof of Strong Duality 

According to Theorem 2, for proving strong duality we should show that there always exists a   at which we have 
*{ ( )}B B  .  

For OIBL problem, according to (17), 
*{ ( )}ib   contains all the integer values in . Since 

*{ ( )}ib  s are 

non-increasing and 
*lim{ ( )}ib





   and 

*lim{ ( )}ib





   then 
* *

1
{ ( )} { ( )}

N

ii
B b 


  contains all the 

integer values including B  and 
*{ ( )}B B   always can be held. 

For ONIBL problem, according to (18), 
*{ ( )}ib   contains all the integer values in the interval [0, ]iu . Since 

*{ ( )}ib  s are non-increasing and 
*lim{ ( )}i ib u





  and 

*lim{ ( )} 0ib





  then 
* *

1
{ ( )} { ( )}

N

ii
B b 


  
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contains all the integer values in the interval 
1

[0, ]
N

ii
u

  including B  (according to the condition 
1

N

ii
u B


 ) 

and 
*{ ( )}B B   always can be held. 

Therefore, according to Theorem 2, the strong duality property is satisfied and the solution of Lagrange dual 

problem is the same as that of the main problem. 

Complexity of Algorithm 1 

In step 2 of the algorithm for [ ] 0f n   the value 
1n  is set to 1n   and for [ ] 0f n   the value 

2n  is set to 

1n  . Thus, in i th 
iteration we would have 

 1

2 2

i
i i

N N
N    

Where iN  is the value of 2 1n n  at the i th 
iteration. Assume that I  is the total number of iterations then  

 1
2I

N
  

 log 1I N     

Thus, the algorithm is 2(log )O N . 

Proof of Lemma 1 

Assume that 
1, , 1 ,,c c c

k j i j i j  
  then 

 1 12 2 2jj j

i k iC C C       (A3) 

Then for each integer 2 1j j  we have 

 2 1 2 11 or 1j j j j     

 2 1 2 11 12 2 2 2j j j j

k k k kC C or C C        (A4) 

According to (A3) we have 

 1 112 2 2jj j

i k iC C C      (A5) 

and 

 1 11 22 2 2jj j

i k iC C C       (A6) 

According to (A4)-(A6) 
2, , 1 ,,c c c

k j i j i j  
 . Thus,  * ( )kb   has at most one critical   in the interval 

, 1 ,,c c

i j i j 
  (here 

1,

c

k j ). 

Proof of Lemma 2 

To solve the ONIBL problem we can find the intersection of 
*{ ( )}B   with the horizontal line ( )f B  . Since 

*{ ( )}B   is non-increasing with  , we may encounter the following cases:  

1) The intersection of 
*{ ( )}B   with ( )f B   is a singular point. In this case the solutions occur at a critical 

  as s  and two or more number of 
*{ ( )}ib  s have two values at s . Assume that m  number of 

*{ ( )}ib  s 

have jump at s ( 2)m   and let 
*( )s Ul B B  . In order to have 

*{ ( )}B B  , since 0l  , for l  

number of 
*{ ( )}ib  s which have two values at s  we must select the lower values and for the remaining 

*{ ( )}ib  s select the upper values. Thus, in this case we have 
m

l

 
 
 

 solutions for ONIBL problem. Also 
*{ ( )}B   

would have 1m   singular points and two nonsingular steps at s . (see Fig. 4). 

2) Intersection of 
*{ ( )}B   with ( )f B   is a nonsingular step (defined in section 4) that contains infinite 

values for  . Since we have no jump at a nonsingular step, the values of 
*{ ( )}ib  s are constant at a nonsingular 

step. Thus, in this case the ONIBL problem has a unique solution.□ 

Proof of Lemma 3 

In the ONIBL problem we should find a   such that 
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*

1

{ ( )}
N

i

i

b B


  

 
* * *

* * *

:0 { ( )} :{ ( )} 0 :{ ( )}

0

{ ( )} { ( )} { ( )}

i i i i i

i i i

i b u i b i b u

b b b B
  

  
   



      

 
* *

*

:0 { ( )} :{ ( )}

{ ( )}

i i i i

i i

i b u i b u

b B u
 


  

    

Substituting 
*   yields  

 
* *{ ( )}

u

i i

i i

b B u
 

  
S S

 

We should find a 
*  that satisfies the above relation. Thus, the ONIBL problem is an OIBL problem for the 

subcarriers in S  and symbol size 
u

i

i

B u



S

. 

Proof of Lemma 4 

According to (18), (24) and Remark 3 we have 

a) 

 
* * * *

,1 { ( )} 1 0c

i i ib b        

b) 

 
* * * *

, { ( )}
i

c

i u i i i ib u b u        

Proof of Theorem 3 

In (27) 
*

ib  can be rewritten as 

 
*

2 2

1

1
log ( ) log ( )

N

i i n

n

B
b C C

N N 

 
     
 

  

 
0

2

1

1
log ( )

N

i i n

n

BB
C

N N N
 



 
           
 

  (A7) 

where 

 
0 2

1

log ( )
N

n

n

B C


     (A8) 

 2 2log ( ) log ( ) , 1,2,...,n n nC C n N       (A9) 

Since [0,1)n  , n  then ( ) ( 1,1)i n     and therefore  1,0i n      . Thus 

 

1

1
0 1

N

i n

nN
 



       

define 

 
0

1

N

i i n

n

B  


      (A10) 

 0B B
b

N

 
  
 

 (A11) 

 0B B B Nb    (A12) 

Substituting (A10)-(A12) in (A7) yields 

 
* 0

2log ( )i
i i

B B
b b C

N

 
      
 

 

 
0

2log ( )i
i

B B
b C

N

 
       

 
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Since B  is the reminder of dividing 
0B B  to N  we have 0 B N  . Also, we have 

00 iB N   and 

hence 

 00 2iB B

N


   (A13) 

Thus, according to (A12) and (A13): 

 
2 0*

2

log ( ) 1

log ( )

i i

i

i

b C if B N B
b

b C otherwise

       
 

    

 (A14) 

On the other hand, we have 

 
1

0

n i

i n

n i

if

if

 
 

 

 
    


 (A15) 

We can conclude from (A9), (A10) and (A15) that 

  0 1
( , ) 1

N

i i n n
B  


   

Define 

  
1

( ,  )
N

n n
B 


 P Φ  

The operators Φ  and   are defined in subsection 3-c. We have 

  0 1
( , ) 1

N

i i n in
B N B N B  


       P  

Thus, (A14) can be written as 

 
2*

2

log ( ) 1 if

log ( ) otherwise

i i

i

i

b C
b

b C

      
 

    

P
 

In the case that some of ib s have two optimal values, according to Lemma 2 the corresponding 
*{ ( )}ib  s have 

equal critical  s which are equal to the optimal  . Assume that ib  and kb  have two optimal values then we have 

 * *, ,i k

c c

i b k b
   

 
* *1 12 2i kb b

i kC C   

Taking 2log  yields 

    * *

2 2log 1 log 1i i k kC b C b      

Substituting 
*

ib  and 
*

kb  from (27) we conclude or 1 or 1i k i k i k          . 

Since [0,1)n  , n , only the first equation is acceptable and we have i k  . Let m  be the number of ib s 

that have two optimal values (have equal i s) then the difference between sum of the upper values of 
*

ib  and B  is 

   21
log ( ) 1

N

ii
l b C B


       

  0l Nb N B B     
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Thus, in order to have 
*

1

N

ii
b B


  for l  number of 

*

ib s we should select the lower value in (28) and we have 

 m

l
 combinations for the solution of problem. 

 

Proof of Lemma 5 

a) It is obvious from (18)-(20). 

b) According to (20): 

 

1

( ) ( )
N

i

i

B b 


  

 

( ) ( )

( )
u

i i

i i

b u
 


 

  
S S

 

Substituting ( )ib   from (19) yields 

 
2( ) ( ) log ( 2 ) ( ) ( )uB N B B          

c) According to (42): 

 
* * * * *

2( ) ( ) log ( 2 ) ( ) ( )uB N B B          

If 
*  is non-critical then we have 

*( )B B   and hence 

 
*

2log ( 2 ) uB N B B      

 
 / 1* 2

uB B B N


   
   

d) According to (41): 

 
* * * * *( ) ( ) { ( )} ( )B N B B       

 
* *{ ( )}B N B B    (A16) 

Since for the subcarriers in S  we have 
* *0 ( )i ib u  , all these N   subcarriers have at least one critical   

smaller than 
* . Furthermore, since N N   according to (A16) and Lemma 1 each 

*{ ( )}ib   in the interval 

* *,   has at most one critical   (otherwise at least one of 
*{ ( )}ib  s has more than one critical   between 

two successive critical  s of another 
*{ ( )}ib   which is contradiction to Lemma 1). Thus, since at each critical   

the value of 
*{ ( )}ib   changes 1 unit we have 

 
* * * * * *( ) 1 ( ) ( ),i i ib b b i       

 
* * * *1 ( ) ,i i ib b b i     

Complexity of Algorithm 2 

This algorithm has at most 2log ( ) 1N     iterations and at each iteration the sets Λ , 
uS , 

S , S , 
uB , 

and B   are bisected. Thus, according to the complexity of selection algorithm, the computational complexity of 

l th 
iteration is ( / 2 )lO N . Therefore, the order of the total complexity of the algorithm is 

 

2log ( ) 1 log 2
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1 (1/ 2)
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N N
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N N

       




 


  

Complexity of Algorithm 3 

The worst case complexity of computing 
* *{ ( )}B  , Λ , 

S , 
uS  and complexity of Algorithm 2 is ( )O N  

and hence Algorithm 3 is also ( )O N .  

 


