A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS
Editorial
10.22099/ijste.2013.1761
Abstract
In the present study, we propose a novel clustering-based method for modeling accurate fuzzy rule-based classification systems. The new method is a combination of a data mapping method, subtractive clustering method and an efficient gradient descent algorithm. A data mapping method considers the intricate geometric relationships that may exist among the data and computes a new representation of data that optimally preserves local neighbourhood information in a certain sense. The approach uses subtractive clustering method to extract the fuzzy classification rules from data; the rule parameters are then optimized by using an efficient gradient descent algorithm. Twenty datasets taken from UCI repository are employed to compare the performance of the proposed approach with the other similar existing classifiers. Some non-parametric statistical tests are utilized to compare the results obtained in experiments. The statistical comparisons confirm the superiority of the proposed method compared to other similar classifiers, both in terms of classification accuracy and computational effort.
(2013). A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS. Iranian Journal of Science and Technology Transactions of Electrical Engineering, 37(1), 67-77. doi: 10.22099/ijste.2013.1761
MLA
. "A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS", Iranian Journal of Science and Technology Transactions of Electrical Engineering, 37, 1, 2013, 67-77. doi: 10.22099/ijste.2013.1761
HARVARD
(2013). 'A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS', Iranian Journal of Science and Technology Transactions of Electrical Engineering, 37(1), pp. 67-77. doi: 10.22099/ijste.2013.1761
CHICAGO
, "A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS," Iranian Journal of Science and Technology Transactions of Electrical Engineering, 37 1 (2013): 67-77, doi: 10.22099/ijste.2013.1761
VANCOUVER
A NEW CLUSTERING-BASED APPROACH FOR MODELING FUZZY
RULE-BASED CLASSIFICATION SYSTEMS. Iranian Journal of Science and Technology Transactions of Electrical Engineering, 2013; 37(1): 67-77. doi: 10.22099/ijste.2013.1761