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Abstract– In this paper, an adaptive detection scheme for fluctuating targets with a swerling I 
model in AR interference is presented. Since the proposed detector uses more information from the 
target signal in its structure, it has better performance compared with those detectors which do not 
use the target amplitude model. Performance improvement of this detector compared with the 
previously AR model based adaptive detector (ARGLR) is shown by simulation results. Besides, 
another detector is proposed for the known amplitude situation whose performance can be used as 
an upper bound for all similar detectors.           

 
Keywords– Detector, radar, adaptive detector, fluctuation, ARGLR, detection theory  
 

1. INTRODUCTION 
 

The detection theory has been used in radar signal detection since the 1950’s. The first research in this 
case was made by Marcum [1]. He considered the detection of a completely known signal in white 
Gaussian noise using multiple received samples. This research was continued by Swerling [2-4], and since 
then, radar detection has been consistently developing. 

The design of adaptive radar detectors is a very important application of the detection theory in radar 
signal processing. Hence, several detectors have been proposed in this field which can be divided into 
three main categories: SMI based detectors [5-10], GLR based detectors [11-19] and AR model based 
detectors [20-26]. Whereas AR model based detectors consider some special interference modeling, their 
performance is more desirable compared with others [27-29]. In these detectors the target is assumed to be 
nonfluctuating. But this is not the case in many real scenarios, so in this paper the AR model based 
adaptive detector for fluctuating targets (SW1) was considered. 

This paper is organized as follows. In section II the problem formulation is presented. In section III 
the proposed detector will be introduced. Section IV is devoted to performance evaluation by computer 
simulation, and finally section V gives a summary and conclusions. 
 

2. PROBLEM FORMULATION 
 
We have considered coherent detection in a pulsed radar system for detecting targets in a primary data 
vector. The system also uses L  secondary data vectors which are assumed to be signal free for adaptation. 
So, the following detection problem is considered: 
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Where )(ky ’s, Lk ,...,1,0=  are complex N-tuple vectors denoting the received primary and secondary 
signal. Also, s  is a complex N-tuple vector which denotes the target signal and is given by: 

 
[ ]TNjj ees Ω−Ω= )1(1 K                                                (2) 

 
This vector corresponds to a target whose normalized Doppler is a known constantΩ . b  is the unknown 
complex amplitude of the reflected signal from the target. )(kn ’s are also complex N-tuple interference 
vectors which are assumed to be an AR process of order M given by [29]: 
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Where ikw , ’s are zero-mean discrete complex white Gaussian noise with variance 2σ , and a  is the AR 
parameters vector. We assume that a  and 2σ are also unknown, but fixed constants which are the same 
under the two hypotheses. 

Sheikhi assumed b  to be unknown and derived a GLRT for the hypothesis-test [24-26]. In this paper, 
we assume a different assumption regarding b in two different cases. 
 

3. DESIGN OF NEW ADAPTIVE DETECTORS 
 

CASE 1: We assume the target has fluctuation with the Swerling I model. Therefore, the target amplitude 
b  to be given by: 

 
ϕjueb =                                             (5) 

 
u  has Rayleigh distribution with unknown parameter m , as follows: 
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and ϕ  has uniform distribution in the interval [ )π2,0 . 
For deriving the decision rule, we first calculate the likelihood ratio as follows: 
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For the sake of brevity, we use ( )2 2

0 1| , , , , ,L y a a uσ σ ϕ′ ′′  instead of ( )2| , , ,L y a uσ ϕ , albeit the latter 
representation is more usual. Since ikw , ’s are Gaussian and independent identically distributed (i.i.d): 
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Considering the AR model of interference yields: 
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therefore: 
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If the poles of the AR process are not too close to the unit circle [23], we have: 
 

∏ ∑ ∑
= += =

−

+











′′−−









≅

L

k

N

Mn

M

r
rnkrnk

LN

Y

xax

HLyyf

0 1

2

1
,,2

1

)1(

2
1

1

1exp1

]|)(),...,0([

σπσ

                                (14) 

 
In a similar way, the following equation can be written for 0H  condition: 
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Based on the detection theory, the ALR can be used because the distribution of parameters u  and ϕ  

are known. Hence: 
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Now, using definitions: 
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We can write: 
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and so the term B  can be rewritten as: 
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By the following definition: 
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The integral argument of D  can be simplified as: 
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Considering the modified Bessel function of the first kind: 
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D  can be written as: 
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By solving the G  integral we have: 
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Consequently, considering the definitions of Y  and P  matrices: 
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Where: 
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Therefore, the likelihood ratio will become as follows: 
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Now, because the parameters m  and 2

1σ  in the 1F  statement are unknown, and the distribution of these 
two parameters are also unknown, we apply the GLR test on the likelihood ratio. By some computations, 
we can obtain the ML estimation of these parameters as follows: 
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Substituting Eqs. (42) and (43) in 1F  and applying the log operator, we obtain: 
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Also, with simplifying Eq. (43): 
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Also, since the AR parameter vector, a ′′  is unknown, if we substitute its ML estimation in Eq. (45), 2
1σ  

becomes an estimation of its real value. Unfortunately, there is no closed form for 1F  to compute the ML 
estimation of the a ′′  parameter vector. In other words, it is impossible to convert it to a least squares 
problem. Then, we used the covariance method for the estimation of parameter a ′′ . This method is not 
necessarily optimal, but is similar to what is used in ARGLR. We have: 
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It has to be mentioned that the process has two steps. First, it projects the primary data in the 
perpendicular subspace of target signal space using the H  transform. Then, in the second step it estimates 
the variance of the AR process. Substituting Eq. (47) in 1F  yields: 
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Similar to the 1F , for term 0F  we have: 
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Substituting Eq. (52) in 0F  yields: 
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And finally, the decision rule will become: 
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Since we used the ALR and GLR tests to derive the structure of this detector, and considered the AR 
model for interference, we call it ARAGLR. Figure 1 shows the block diagram of the ARAGLR detector: 
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Fig. 1. Block diagram of ARAGLR detector 
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Since this detector uses more information in comparison with the ARGLR, we expect the ARAGLR to 
have better performance than the ARGLR. 
CASE 2: We assume b  to be completely known. In this case, the amplitude and the phase of the target 
signal are constant and have known values. So the likelihood ratio is given by: 
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Since: 
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Using Eqs. (5) to (20), we obtain: 
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And so: 
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2
00
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σ
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Since parameters 2
0σ  and 2

1σ  are unknown, we should now compute the ML estimations of these 
parameters. Therefore, we obtain: 
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Substituting ML
2
1σ̂  in ]|[ 1HfY L : 

 
)1(ˆln)1(ln)1(]|)(),...,0([ln 2

11 +−+−+−= LNLNLNHLyyf MLY σπ             (62) 

And also: 
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And so ML estimations of a′  and a ′′  are: 
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[ ]100 , ssYYYY Mtt K×=+=′ θ                           (69) 

 
Consequently, the following statements will be obtained: 
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And so: 
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Finally, the decision rule is: 
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                   (74) 

 
Since this detector has been derived under the special conditions in which target amplitude is known, it is 
point optimum, hence we call it ARGLRPOD (ARGLR Point Optimum Detector). Since this detector uses 
the most information of the target amplitude, we use its performance as an upper bound for the achievable 
performance by target amplitude modeling.  
 

4. PERFORMANCE EVALUATIONS 
 
The behaviors of ARGLR and ARAGLR detectors have been simulated for comparison. The Monte-Carlo 
method was used for this purpose. In this procedure, we produce AR interference of order 4=M  with 
parameters: 
 

Tjjjja ]2.01.01.02.03.04.07.03.0[ −−+−−−−=  
 

Since these simulations are performed for specific Signal to Noise Ratio (SNR), the SNR is defined as: 
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cN
H
c SRSSNR 1−=                                                       (75) 

 
Where cS  is the signal vector of the target and NR  is the covariance matrix of interference (Note that 
"noise" used in SNR refers to the interference, which is the clutter with the AR model here). Based on the 
[30], for the AR process, 1−

NR  can be calculated from: 
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Where 2

eσ  is the variance of the input white Gaussian process to the AR filter. Thus, the SNR will be: 
 
 

{ } ( ) sRsbESRSESNRsbS N
H

cN
H
cc

121 −− ==→=                            (77) 
 
For Rayleigh distribution: 
 

sRsmSNR N
H 12 −=                                                (78) 

 
When the amplitude of the target signal is known, (77) becomes: 
 

sRsbSNR N
H 12 −=                                                 (79) 

 
It is clear that the target signal phase has a uniform distribution in the interval [ )π2,0 . 

Based on the simulation results, Figs. 2 to 4 have been obtained. Figure 2 shows the performance of 
ARAGLR and ARGLR against SNR at 001.0=faP . Figures 3 and 4 show the ROC of ARAGLR and 
ARGLR for N=10, L=15, and )/(4 srad=Ω  at dBSNR 10−=  and dBSNR 15−= , respectively. As 

the figures show, the performance of ARAGLR in low SNR and the low probability of a false alarm is 
better than ARGLR. Since the SNR and probability of a false alarm are relatively low in the practical 
applications, this is a very desirable result. Besides, the performance of both detectors depends on the 
assumed value for the Doppler shift (Ω ) compared with the clutter spectrum. For instance, if in the above 

situations Ω  is changed to π  (rad/s), the superiority of the ARAGLR will be more apparent for higher 
SNR. Figure 5 shows the ROC of ARAGLR and ARGLR in these conditions at dBSNR 10= . The 
superiority of the ARAGLR compared with ARGLR has been clearly illustrated in this figure. 
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Fig. 2. Pd against SNR for ARAGLR and ARGLR 

 

 
Fig. 3. ROC for ARAGLR and ARGLR ( srad /4=Ω , SNR=-10dB) 

 
As we know, one of the most important features of any detector is its CFAR property. In other words, 

to compare the two detectors, we should compare their CFAR property in addition to their ROC’s. It is 

proven that ARGLR has CFAR property for enough large pulse numbers [25]. So, because of the 
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similarity of the deriving method for ARAGLR and ARGLR, it can be concluded that ARAGLR has a 
similar CFAR property. But, for more confidence, its CFAR property has been investigated and Fig. 6 is 
obtained. This figure shows Pfa against noise power for the fixed threshold as well as some various pulse 
numbers. As is seen, the ARAGLR detector has a very good CFAR property, even for the small values of 

pulse numbers. 

 
Fig. 4. ROC for ARAGLR and ARGLR ( srad /4=Ω , SNR=-15dB) 

 
Fig. 5. ROC for ARAGLR and ARGLR ( srad /π=Ω , SNR=10dB) 
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Fig. 6. Pfa against interference variance (CFAR property for ARAGLR) 

 
Performance comparison of ARGLR and ARGLRPOD detectors against SNR at 01.0=faP  

and 001.0=faP , have been shown in Figs. 7 and 8 respectively. As it is seen, there is 3-5dB improvement 
in the performance of the ARGLRPOD in comparison with ARGLR. Figure 9 shows the performance of 
ARGLRPOD in different amplitudes such that the dash-dotted line and solid line have maximum and 
minimum amplitudes in these simulations, respectively. Notice that in Fig. 9, the solid line shows the 
performance in the case that the real amplitude of the target signal matches that of the assumed amplitude. 
Also, the dashed line and dash-dotted line show the performance in the cases that real amplitude is three 
times and five times that of the assumed amplitude, respectively. As is seen, when the real amplitude 
increases, the performance of ARGLRPOD is improved. Therefore, we can design our interested detector 
for the smallest expected amplitude and be sure that we will not have inferior performance in all real 
cases. 

 
Fig. 7. Pd against SNR for ARGLRPOD and ARGLR (Pfa=0.01) 
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Fig. 8. Pd against SNR for ARGLRPOD and ARGLR (Pfa=0.001) 

 

 
Fig. 9. Pd against SNR for ARGLRPOD and non-matched amplitude 

 
5. SUMMARY AND CONCLUSIONS 

 
In this paper we have designed ARAGLR and ARGLRPOD detectors in which the former uses some 
assumptions closer to the practical cases and real conditions for fluctuating targets, while the latter can be 
used for conservative designs. Simulation results show that the ARAGLR detector, in which the target 
amplitude has been assumed to have Rayleigh distribution, has better performance than the ARGLR, 
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especially for low SNR and low probability of false alarms. Moreover, this new detector has CFAR 
property, even for small values of pulse numbers. 

Also, for the ARGLRPOD detector in which the target amplitude is known, we see that its 
performance is improved 3-5dB compared with the ARGLR. These results show the importance of the 
ARAGLR detector (much consistency with the real conditions) and also the ARGLRPOD detector (design 
in the worst case).  
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