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Abstract–Safety-critical systems such as medical and avionic ones are the systems in which 
failure to satisfy the user requirements may put man’s life and resources in jeopardy. Since the 
adequate reliability of the software of such systems may be unobtainable via formal methods and 
the software testing approach single-handedly, verification of run-time behavior of software 
against user requirements violation is considered as a complementary approach. However, the 
synthesis of such a run-time verifier, hereafter we have called it a monitor, is confronted with the 
challenging problem of verifying low-level run-time behavior of target software against high-level 
user requirements violation. To solve this problem, we propose an approach in two phases. In the 
first phase, we obtain user requirements and then specify their violation formally. This formal 
specification is a high-level version of user requirements violations and should be mapped to a 
low-level one. To this end, in the second phase we extract a tabular automaton from the formal 
specification of user requirements violations in order to determine a state-based specification of 
the violations. This low-level specification, which constitutes the core of the monitor, determines 
those states which target software should not reach. To show the effectiveness of our approach, we 
apply it to the synthesis of a monitor for verifying behavior of the Continuous Insulin Infusion 
Pump (CIIP) system.          
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1. INTRODUCTION 
 

Safety-critical systems such as medical, avionic, nuclear reactors and chemical plants are systems that, 
when they fail, may result in loss of human life or damage to the environment [1, 2, 3]. NASA states, 
“Software is considered safety-critical if it controls or monitors hazardous or safety-critical hardware or 
software” [4]. On the other hand, as software becomes an important component of safety-critical systems 
its size and complexity increases too. This leads to a high probability of the system fault. Therefore, the 
major aim of safety-critical software development is the development of reliable systems in spite of their 
complexity. Moreover, the verification and validation process plays a vital role in software development 
because it is required to ensure that software behaves as intended. The aims of software verification and 
validation are: (1) exposing the faults of the specification, design, and implementation of the software, (2) 
assuring software reliability and (3) reducing costs by preventing software failures. 

Although use of static verification and testing approaches to detect software faults are necessary, they 
may be inadequate. Using formal methods for static verification is subject to (1) undecidability and 
difficulty of proving some properties of specifications, and (2) unpredictability of the run-time 
environment at the specification time. This is why Leucker and Schallhart state that while model checking 
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verification is subject to the infinity of the state space of software runs, run-time verification faces a finite 
execution of software [5]. Rosu et al showed an experimental case that was generally undecidable, but in 
run-time verification it was decidable [6]. They state, “We show that although verification of memory 
safety is in general undecidable, even when restricted to closed, terminating programs, runtime 
verification of strong memory safety is a decision procedure for this class of programs”. Using software 
testing is subject to (1) impracticality of testing software by all possible input values (that is why Hoare, 
Dijkstra [7] and Parnas [8] believe: “Non-exhaustive testing can only show the presence of errors not their 
absence”) and (2) difficulty of selection of a proper subset of test data.  

Safety-critical software should be verified properly in order to achieve greater reliability because: (1) 
there may be some faults left despite verifying specification and testing software, (2) implemented 
software may be inconsistent with its specification, and (3) the environment in which software will run 
may be unpredictable. Safety-critical software must be bound to 10-9 failures/hour or less [9], while the 
reliability growth models have proven that software testing can guarantee 10-4 failures/hour in the best 
case [10]. In addition, cases such as: (1) codes that a compiler adds to the object code of software, (2) 
whether a compiler correctly generates an executable code [8], and (3) transient errors such as data 
corruption and hardware malfunctions are other aspects of the problem. Iyer and Verlardi state that around 
10% of software errors and 35% of hardware errors are transient errors, which could not be identified in 
advance [11].  

The above-mentioned problems justify verification of run-time behavior of software against user 
requirements violation. However, the synthesis of such a run-time verifier, called a monitor is confronted 
with the challenging problem of verifying low-level run-time behavior of target software against high-
level user requirements because they are not analogous. Since such a monitor is a run-time verifier with a 
core synthesized based on the specification of high-level user requirements, we call it a specification-
based monitor.  

To synthesize the monitor, we propose an approach in two phases. In the first phase we obtain user 
requirements from the problem domain, and then specify their violation of them formally. This phase 
includes two steps. In the first step, we obtain user requirements from the problem domain via a specific 
method. In the second step, we represent an event-based specification of violation of user requirements 
based on interactions between the system and its environment in Event Calculus (EC). EC [12-13] makes 
three contributions to our approach: (1) it facilitates the specification of the violation of user requirements 
through a logical and temporal method, (2) it facilitates mapping event-based specification into a state-
based one, and (3) it is well-suited to specify user requirements of the safety-critical systems which 
control and manage their environment based on environment events. The second phase includes two steps 
as well. In the first step, we extract a tabular automaton from the event-based specification of user 
requirements violation in order to determine a state-based specification. This specification, which 
constitutes the core of the monitor, determines those states which target software should not enter. In the 
second step, we deal with designing the monitor via the State Design Pattern [14], which is a method for 
designing an automaton. As stated, each phase includes two steps; so we refer to them as steps 1 to 4 
where the second and third steps represent two views respectively, event-based and state-based, of a 
system behavior deviation. Presenting these two views together implies two sides of safety-critical 
systems behavior: 1) while they are event-oriented in interaction with their environment, 2) are state-based 
within themselves. 

We explain the approach in Section 2 and its steps in Sections 3 to 6. In Section 7, in order to show 
the effectiveness of the approach, we apply each of the steps to derive the monitor of a safety-critical 
system called Continuous Insulin Infusion Pump (CIIP) [15] from the system problem domain. Finally, in 
Section 8, we draw some conclusions and we state the features of the approach in comparison with other 
related approaches. 
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2. PRELIMINARIES 
 
The run-time verification of software behavior is a lightweight formal method in which no theorem 
proving method is applied, modeling is restricted; accordingly, mathematics embodiments are reduced. 
This method uses features of the specification verification and the software testing approaches but unlike 
them, it just addresses verification of the current execution of software. An execution is a finite sequence 
of observed program states σ=s1s2…sn where |σ|=n is the length of the execution trace [16]. Leucker and 
Schallhart state, “Runtime verification deals only with observed executions as they are generated by the 
real system. An execution of a system is a finite prefix of a run and, formally, it is a finite trace. When 
running a program, we can only observe executions, which, however, restrict the corresponding evolving 
run as being their prefix” [17]. 

This is why the approach does not involve: (1) the complexity of theorem proving methods and state 
explosion problem of model checking methods and (2) the problem of generating appropriate and 
sufficient test data to execute software because run-time verification just considers software execution by 
providing real data originated from run-time environment. The run-time verification approach has shown 
its effectiveness in comparison with other verification methods [18-20]. 

Figure 1 shows the architecture of a monitor [21] where the state of executing software changes in 
response to an environment event. The observer receives the software state and sends it to the analyzer if 
the state is a concern. Then, the analyzer verifies software states against properties of requirements and 
gives the result to the event handler. If the current execution of software violates a requirement property, 
the monitor will react to it through the event handler. In our approach, we assume that: (1) software is a 
white-box and the observer is a part of the executing software that announces states of interest to the 
analyzer and (2) the event handler is a part of the analyzer where reaction is a warning message. 
Therefore, hereafter we refer to the analyzer and event handler in Fig. 1 as the monitor. 
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          Fig. 1. Architecture of a monitor [21] 

 

 

 

  
 

 
Fig. 2. The proposed approach to derive a monitor from safety requirements 

 
Figure 2 shows the four steps of our approach to synthesize the monitor (i.e., analyzer) which is in charge 
of current software behavior against violation of user requirements. The user requirements of safety-
critical systems are stated as safety requirements. According to [22], a safety requirement asserts, 
“Nothing bad happens” where the bad event is a violation of a user requirement. Therefore, to monitor a 
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safety-critical system against safety requirements, run-time behavior of its software should be verified 
against the user requirements violation. In a medical system, for instance, “Normal pressure” is a user 
requirement and “Low/high pressure” is a violation of the user requirement. Therefore, the user 
requirement, “Normal pressure” can be proposed in the form of a safety requirement, “No low or No high 
pressure should happen” where the low/high pressure is a violation of the user requirement “Normal 
pressure”. 

In Step 1, in keeping with the view of the problem domain, we specify safety requirements through 
determining the violation of user requirements. In Step 2, we present a formal and event-based 
specification of safety requirements because safety-critical systems are mostly used to control and manage 
their environment based on the environment events. In Step 3, we consider the event-based specification 
of the safety requirements violation and derive its state-based specification version. Therefore, the state-
based specification shows those states that target software should not enter. In fact, Step 3 is a significant 
step by which we address the problem of deriving violating low-level run-time behavior from the violation 
of high-level specifications. In Step 4, we design the monitor based on patterns where each pattern is the 
state-based specification of a violation.  

Altogether we present three levels of specification and derive each level from the previous one: (1) 
domain-based specification, which is a user level one, (2) event-based specification, which is formal and 
event-based, and (3) state-based specification, which is a low-level one. Accordingly, whenever an 
environment event happens, the monitor can compare software behavior with the state-based specification 
of safety requirements violation. Our approach is a systematic one in which the first step is fulfilled 
manually but the rest of the steps are fulfilled automatically. In the following four sections, we explain the 
steps of the proposed approach. 
 

3. SPECIFYING DOMAIN-BASED SAFETY REQUIREMENTS (STEP 1) 
                       
A safety-critical system such as diabetes control system aims at managing a safety-critical environment 
such as a diabetic where the environment has some requirements. If such a system fails to satisfy the 
requirements of its environment, the environment may face some disasters. For example, if a diabetes 
control system fails to satisfy requirement “Normal blood sugar”, the diabetic may be afflicted with 
cerebral, eye, heart, or kidney diseases. As we stated in Section 2, user requirements of safety-critical 
systems are stated as safety requirements. In the diabetes system, for instance, “Diabetic’s blood sugar 
should be normal” is a user requirement that can be stated in the safety requirement, “Diabetic’s blood 
sugar should not be low or high”. Therefore, to monitor target software its run-time behavior for the 
violation of the user requirements should be verified.  

To specify safety requirements, we use problem domain and determine violation of user requirements. 
Since the problem domain is stated in terms of vocabulary of the system user, it is called domain-based 
specification. Inspired by [23], in order to determine the violation of the domain-level requirements more 
naturally and clearly, first we designate an environment by its attributes where an attribute is an important 
characteristic of the system environment. Afterwards, we define events and invariants in terms of the 
attributes. Finally, we specify the violation of the user requirements as an event together with some 
invariants, if any. An event indicates a crucial change in an environment attribute value, but an invariant 
indicates no crucial change in another attribute value while an event happens.  

In the diabetes control system, for instance, the diabetic is the system environment where “A sharp 
fall in his/her blood sugar”, indicated by normal→ low, is the event that violates the user requirement 
“Normal blood sugar”. However, “A rise in his/her blood sugar”, indicated by normal→ high, is the event 
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which violates the user requirement “Normal blood sugar” if the invariant “Insufficient insulin in the 
system reservoir” holds. In order to define events and invariants formally, we first define data abstraction.  
 
a) Data abstraction 
 

The system environment is specified by some attributes where an attribute, indicated by Att, is a well-
ordered set of Boolean, integer or real values. The order property distinguishes the Boolean set {true, 
false} (with the well-ordering specified by the order of writing its elements) from the Boolean set {false, 
true}. A well-ordered set is a totally (linearly) ordered set if the set and every one of its subsets contains a 
first element [24]. For example, the set of integers Z={…-2,-1,0,1,2,…} is a linearly ordered set but not a 
well-ordered one because it does not have a first element. However, the set of positive integers 
P={1,2,3,…} is a well-ordered set because P and every one of its subsets has a first element. The order 
relation “≤” (i.e., “less than or equal”) is a relation on any set Att satisfying the following three properties 
P1, P2, and P3. 
 

P1. Reflexive: for all a ∈ Att, a ≤ a,  
P2. Antisymmetric: for all a, b ∈ Att, if a ≤ b and b ≤ a then a=b,  
P3. Transitive: for all a, b, and c ∈ Att, if a≤ b and b≤ c then a≤ c. 

 
Definition. A set is said to be bounded if and only if it is a subset of a finite interval. For example, the 

set {1 : 1nn ≥ } is bounded because it is certainly a subset of the closed unit interval [0,1] [24]. 
Let a and b be two distinct integer or real numbers where a < b. An interval with endpoints a and b is 

defined as a closed-open interval from a to b, i.e., [a,b). Now, based on the problem domain an Att is split 
up into bounded and disjoint intervals with the order relation “≤” such that for two consecutive intervals, 
say, [a,b) and [b, c), the supremum of the first interval is the minimum of the second one. In the case of 
integer numbers, such bounded intervals are finite. However, in the case of real numbers they may be 
infinite and uncountable. This is not an obstacle to our approach because just the endpoints of each 
interval are our concerns. Therefore, in the case of real numbers, without loss of generality, we can split an 
Att up into closed-open intervals such that each interval consists of a minimum and a supremum. For 
instance, suppose that velocity is the environment attribute whose value reaches 10.0 mph at most and 3.0, 
7.5, and 10 are its boundary values. Based on these domain values, we split the velocity up into intervals 
[0…3.0), [3.0…7.5), and [7.5…10.0]. When an input value is received from the system environment, we 
compare it with the minimum value of each interval to determine its corresponding interval. Now we deal 
with the defining properties of intervals on the integer or real attributes:  

 
        Attp = {a0 , a1 , . . . , an}  ≡ i,p

k

i 1
I

=
U                // Attp denotes attribute p and it is a well-ordered set. Ii,p is   

.                   the ith closed-open interval of Attp                                (1) 
        I1,p = [a0 , … , aj), . . . , Ik,p = [am , . . . , an):  ∀Ii,p ⊂ Real ∨  ∀Ii,p⊂ Integer , i ∈ [1..k] and p is an 

attribute                                                                                                                                                 (2) 
                                                                             // each Ii,p is an interval on the Attp whose minimum and                 
……….                                                                   supremum are determined based on the problem domain 
        ∀i: Ii,p≠∅                                                     // each interval of an attribute is a non-empty set            (3) 
        Ii,p ∩ Ij,p =  ∅  : i ≠  j, Ii,p, Ij,p ∈Attp              // intervals of an attribute are disjoint                               (4) 

       
i,p j,p

i,p i,p

  I ,   I , i j
,   I ,     I { ∈ ∈ <

∈ <<
a b
a b a b ina b              // because an attribute is a well-ordered set; so each of its 

………………..                                                    subset is a well-ordered one [24]                                    (5) 
 

Having determined intervals, we get down to defining interval indicators. Suppose Ii,p is the ith 
interval of Attp and τ is a sequence number indicating an ordering on the measured values of attribute Attp. 
An Interval Indicator, indicated by (IIi,p)τ, is a mapping for interval Ii,p at time τ in the form: (IIi,p)τ: (Attp)τ 
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→ p τ i,ptrue|(Att
false|otherwise

)  I  { ∈ . Hereafter, we call each measuring time of an attribute as an occurrence. Therefore, 

we say, (IIi,p)τ holds if the τth occurrence of Attp belongs to Ii,p. In the diabetes system, for example, 
suppose that Att1 indicates the blood sugar attribute; accordingly I2,1 will indicate the second interval of 
Att1 and expression “(II2,1)3 holds” means, “The third occurrence of the blood sugar belongs to the second 
interval of Att1”. It should be noticed that at any time, just one interval indicator of an attribute may hold 
because each value of Attp belongs to just one of its intervals (Relation (6)).  

 
    [(IIi,p)τ ∧ (IIj,p)τ] : i≠j, ∀(Ii,p, Ij,p) ∈ Attp, where Attp is an attribute                               (6)                   

 
b) Event definition  

 
We say an event has happened if a change in the value of an attribute such as Attp has caused Attp to 

change from its Ii,p to the adjacent interval, I(i-1),p or I(i+1),p or vice versa. Accordingly, we have assumed 
that there would be no sharp change in the value of Attp. Now, we formally define an event. 

If two consecutive occurrences of Attp, indicated by τth and (τ+1)th belong to two adjacent intervals of 
Attp, we say an event has happened at time τ. This means that an event has happened when: (1) the τth 
measured value belongs to    I(i-1),p or I(i+1),p and the (τ+1)th measured value belongs to Ii,p or (2) vice versa. 
The former case is indicated by Relation (7) and the latter case by Relation (8). Relation (7) states, “τ is 
the last time that Attp has been in  I(i-1),p or I(i+1),p and at this time a change in the value of Attp has caused 
Attp to leave I(i-1),p or I(i+1),p and it then enters Ii,p at τ+1. Similarly, Relation (8) states, “τ is the last time that 
Attp has been in Ii,p and at this time a change in the value of Attp has caused Attp to leave Ii,p and enters    
I(i-1),p or I(i+1),p at τ+1. As Relation (7)/(8) shows, we have used just IIi,p. This means that our concern has 
been just entering/leaving Ii,p not leaving/entering its adjacent interval. 

 
     (Eventi,p)τ def≡[~(IIi,p)τ ∧ (IIi,p)τ+1]                     // entering interval Ii,p at τ+1                     (7) 

 
     (Eventi,p)τ def≡[(IIi,p)τ ∧ ~(IIi,p)τ+1]                     // leaving interval Ii,p at τ+1                       (8) 

 
In the case of Boolean (i.e., Att1 = {true, false}), we have a partition, I1,1={true, false} and just an 

interval indictor, II1,1 is adequate. Therefore, there are just two events:  
 

     (Event1,1)τ def≡ [~(II1,1)τ ∧ (II1,1)τ+1]                // entering interval I1,1 at τ+1                       (9) 
 

     (Event1,1)τ def≡ [(II1,1)τ ∧ ~(II1,1)τ+1]               // leaving interval I1,1 at τ+1                        (10) 
 

where, Relations (9) and (10) can be subsumed by Relations (7) and (8). 
 

Note that events are mutually exclusive, i.e., there are no concurrent events. In other words, we 
assume that at most an event happens at each time step. This means that at the value of at most, an 
attribute changes at each time step (Relations 11 to 14). The left hand sides of Relations 11 to 14 indicate 
the change of value of Attp at τ and the right hand sides of the relations indicate that there may not be a 
change in the value of another attribute, say Attq , at the same time. In addition, as we stated in Relation 
(6), at most, a value of an attribute may change at each time step. 

 
     if [~(IIi,p)τ ∧ (IIi,p)τ+1]  ∧ ∼(IIk,q)τ then ~(IIk,q)τ+1                                     (11)  

 
     if [~(IIi,p)τ ∧ (IIi,p)τ+1]  ∧  (IIk,q)τ   then  (IIk,q)τ+1                                       (12) 

 
     if [(IIi,p)τ ∧ ~(IIi,p)τ+1]  ∧ ∼(IIk,q)τ then ~(IIk,q)τ+1                                      (13)   

 
     if [(IIi,p)τ ∧ ~(IIi,p)τ+1]  ∧  (IIk,q)τ   then  (IIk,q)τ+1                                       (14) 

 
where Ii,p∈Attp, Ik,q∈Attq , p ≠ q 
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c) Invariant definition 
 

Given two consecutive occurrences of Attq, indicated by τth and (τ+1)th, we say there is an invariant 
on Ij,q if: (1) both occurrences belong to Ij,q or (2) neither of them belongs to Ij,q. We call the former case a 
true invariant shown as Relation 15 (IIj,q holds) and the latter one a false invariant shown as Relation 16 
(IIj,q does not hold). Unlike events, invariants may be concurrent. This means that a combination of true 
and false invariants may hold at the same time provided each invariant belongs to just a distinct attribute. 
We show the coexistence of several invariants, i.e. concurrent invariants by τi, r i,r(In ه( ; this specifies some 
invariants on intervals of separate attributes; so, for every two concurrent invariants, “(Ini,p)τ” and 
“(Inj,q)τ”, we have  p ≠ q. 

 
     (Inj,q)τ def≡ [(IIj,q)τ ∧ (IIj,q)τ+1]                   // true invariant means, “IIj,q has been true at τ and τ+1”   (15) 
 

     (Inj,q)τ def≡ [~(IIj,q)τ ∧ ~(IIj,q)τ+1]              // false invariant means, ”IIj,q has been false at τ and τ+1”  (16) 
 

d) Domain-based safety requirement 
 

As we stated in Sections 2 and 3, a safety requirement indicates that a bad event must not happen 
where the bad event indicates a user requirement violation. We show the violation as “(Eventi,p)τ 
∧ τi, r i,r(In ه( ”, consisting of an event (Relation 7 and Relation 8) and zero or some true/false invariants (15 
or 16). In the diabetes system, suppose that Att1 indicates “blood sugar” whose third interval is the high 
interval; so, II3,1 indicates, “High blood sugar” and suppose that Att5 indicates “insulin dose” whose first 
interval is the insufficient interval; so, II1,5 indicates, “Insufficient insulin dose”. Accordingly, “(Event3,1)τ 

∧ (In1,5)τ” where (Event3,1)τ is specified as “[~(II3,1)τ ∧ (II3,1)τ+1]”, and (In1,5)τ is specified as “[(II1,5)τ ∧ 
(II1,5)τ+1]” shows a violation. Invariant “(In1,5)τ” states that at the time of the event, the system reservoir has 
contained insufficient insulin. 

In the case of no invariant, a safety requirement will be specified as ~(Eventi,p)τ. In the diabetes 
system, for example, the statement, “The blood sugar must not fall below normal” indicated by 
~(Event1,1)τ is a safety requirement. According to Relations (11) to (14), we assume that there would be no 
concurrent events. This means that the system would face just one safety requirement at any given time 
and accordingly the monitor behavior is definite when it is verifying target software behavior in 
accordance with safety requirements.  
 

4. SPECIFYING EVENT-BASED SAFETY REQUIREMENTS (STEP 2) 
 
In Section 3, we specified the user requirements violation at the domain-level as events and invariants. 
This helped us to provide an abstract event-based specification of user requirements violation. In this 
section, we intend to map the specification into EC (Event Calculus) Formulae, providing a formal event-
based and time-dependent specification. 

EC was introduced by Kowalski and Sergot [12] to represent actions in time intervals. EC is based on 
three domains represented in Fig. 3 where a fluent is a logical variable or a predicate such as “the device is 
faulty” whose truth-value changes over time and actions, called events change the truth-value of a fluent 
[25]. A deduction system of EC takes action in terms of time and its effects as input and then produces 
some facts as output. The actions by Happens, the effects by Initiates, Terminates and Clipped and the 
facts by HoldsAt are specified. In this paper, we use the Simple EC called SEC [13] in which time points 
are used rather than time intervals. SEC consists of a main axiom S (Fig. 4) and some predicates (Table 1) 
[25] where α, β, and τ indicate an action, a fluent, and a time point, respectively. The axiom S states fluent 
β will be true at time τ if an action (such as α1) happens so that the fluent β is initiated before τ and does 
not change by the time τ. In order to map the domain-based specifications of the user requirements 
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violation into SEC formulae, we deal with determining indicators and specifying invariants and events in 
SEC. 

 
 

 
 
 
 
 

Fig. 3. Event Calculus domains                                                   Fig. 4. The SEC main axiom S [13] 
 

Table 1. SEC Predicates [25] 
 

Meaning Predicate  
fluent β starts to hold after action  α Initiates(α,β) 1 
fluent β stops to hold after action α Terminates(α,β) 2 
time point τ1 is before time point τ2 τ1 < τ2 3 
action α occurs at time τ Happens(α,τ) 4 
fluent β holds at time τ HoldsAt(β,τ) 5 
fluent β stops to hold between τ1 and τ2 Clipped(τ1,β,τ2) 6 

 
a) Determining indicators in EC 

 
We consider an interval indicator as a fluent in EC because both are logical variables. Therefore, an 

attribute consists of a number of fluents. As stated above, facts would be specified as the predicate 
HoldsAt(β, τ) where β is a fluent. Hence, we can show ~(IIi,p)τ as the predicate “~HoldsAt(IIi,p,τ)” and 
(IIi,p)τ+1 as the predicate “HoldsAt(IIi,p ,τ+1)” in EC. The predicate “~HoldsAt(IIi,p, τ)/ HoldsAt(IIi,p, τ)” 
means that the fluent IIi,p, has not held/has held at τth occurrence of the Attp. 

 
b) Specifying events 

 
According to EC, an event may be represented as its effect on the truth-value of a fluent [25] which 

corresponds to an interval indicator. We have used this notion throughout this paper. In Section 3.b, we 
defined an event as Relation (7) or (8 in interval indicators terms. According to Section 4.a, we can 
represent ~(IIi,p)τ as the predicate “~HoldsAt(IIi,p, τ)” and (IIi,p)τ+1 as the predicate “HoldsAt(IIi,p, τ+1)”; so, 
we can state Relations (7) and (8) as Relations (17) and (18) respectively. Relation (17) states, “The fluent 
IIi,p has not held at the τth occurrence of Attp, but it has started to hold at its (τ+1)th occurrence. On the 
other hand, the main axiom of EC (Fig. 4) states, “A fluent will start to hold if an initiation action occurs”. 
Therefore, we conclude from Relation (17) that an action has occurred at the τth occurrence of Attp that 
starts the initiation of the fluent IIi,p at the (τ+1)th  occurrence. 

Now, we represent Relations (11) to (14), indicating no concurrent events, as Relations (19) to (22). 
These relations state that truth-value of just a fluent can change at any given time. 

 
     (Eventi,p)τ def≡ [~HoldsAt(IIi,p, τ) ∧ HoldsAt(IIi,p, τ+1)]         // IIi,p has become true at τ+1        (17) 

 
     (Eventi,p)τ def≡ [HoldsAt(IIi,p, τ) ∧ ~HoldsAt(IIi,p, τ+1)]         // IIi,p has become false at τ+1       (18) 

 
     if [~HoldsAt(IIi,p,τ)  ∧ HoldsAt(IIi,p,τ+1)] ∧ ~HoldsAt(IIk,q,τ) then ∼HoldsAt(IIk,q,τ+1)             (19) 

 
     if [~HoldsAt(IIi,p,τ)  ∧ HoldsAt(IIi,p,τ+1)]  ∧  HoldsAt(IIk,q,τ) then  HoldsAt(IIk,q,τ+1)               (20) 

 
     if [HoldsAt(IIi,p,τ)   ∧ ~HoldsAt(IIi,p,τ+1)]  ∧ ~HoldsAt(IIk,q,τ) then ∼HoldsAt(IIk,q,τ+1)            (21) 

 
     if [HoldsAt(IIi,p,τ)  ∧ ~HoldsAt(IIi,p,τ+1)]  ∧  HoldsAt(IIk,q,τ) then  HoldsAt(IIk,q,τ+1)               (22) 

  
where IIi,p∈Attp, IIk,q∈Attq , p≠q 

1- τ : time (with algebraic structure 
          and linear ordering relations) 
2- Φ = {ϕ1 , ϕ2 , ... ,  ϕn} ∴ ϕi is a fluent 
3- Α = {α1 , α2 , … , αn} ∴αi is an action 

S Axiom:
HoldsAt(β , τ) ← Happens(α1 , τ1) ∧ Initiates(α1 , β) ∧  
                             τ1 < τ  ∧ ~Clipped(τ1 , β ,τ)  
 Clipped(τ1 , β ,τ) ≡ Happens(α2 , τ2) ∧  
                         Terminates(α2 , β) ∧ τ1 < τ2 ∧ τ2 < τ 
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c) Specifying invariants 
 

In Section 3.c, we defined an invariant as Relations (15) and (16). According to Section 4.a, we can 
represent them by a combination of predicates “HoldsAt”. Therefore, Relation (15) or (16) is stated as 
Relation (23) or (24), which state that the truth-value of fluent IIi,p has not changed at two consecutive 
occurrences of Attp. 

 
     (Inj,p)τ def≡ [HoldsAt(IIj,p, τ) ∧ HoldsAt(IIj,p, τ+1)]                     // true invariant in EC           (23) 

 
     (Inj,p)τ def≡ [~HoldsAt(IIj,p, τ) ∧ ~HoldsAt(IIj,p, τ+1)]                // false invariant in EC           (24) 

 
d) Specifying safety requirements 

 
As we stated in Sections 2 and 3, a safety requirement means that a bad event would not happen 

where the bad-event is a user requirement violation. A user requirement violation, indicated by “(Eventi,p)τ 
∧ τi, r i,r(In ه( ”, is specified as an event (Relations 23 or 24) and zero or some invariants (Relations 23 or 
24). Having specified the violation of a user requirement as “(Eventi,p)τ ∧ τi, r i,r(In ه( ”, we specify a safety 
requirement as “(Eventi,p)τ ∧ ~ τi, r i,r(In ه( ”, indicating a bad event will not happen. In the case of no 
invariant, we specify the safety requirement as ~(Eventi,p)τ.  
 

5. SPECIFYING STATE-BASED SAFETY REQUIREMENTS (STEP 3) 
 

In this section, we aim to present a method by which we map the event-based specification of violations, 
stated by EC formulae, to the corresponding state-based one. We are thinking of the state-based 
specification as a tabular automaton (state machine) and we automatically map predicates of EC formulae 
to the elements of the automaton. Shown in Table 2, the structure of the automaton is influenced by the 
transition table introduced by “Software Cost Reduction” method [26]. Before mapping the predicates to 
the elements of the automaton, we explain the syntax and semantic of the automaton. 

An automaton consists of two distinct sets, state and transition where each state is either an 
intermediate state or a final one. We use "mode" instead of the state and inspired by [26], we think of a 
mode as a system state in which the system involves performing an operation. Consider the determination 
of the dose value in the diabetes system, for instance. The system software should perform the 
computation operation to determine the value of the dose attribute; so, the "Computing" mode is 
considered as an operation mode. 

In Table 2, we have considered: (1) the intermediate modes as safe (normal) operation modes of the 
system shown by the “Current Mode” column, (2) the final modes as unsafe or critical modes shown by 
the “Violated Mode” column, and (3) transitions as violations shown by the “Event/Invariant” column. 
Such a transition moves the system from a normal mode into an unsafe/critical one. To specify the state-
based specification of the requirements violation, we should map the event-based one, shown by 
“(Eventi,p)τ ∧ τi, r i,r(In ه( ” in Section 4.d to the transitions of the automaton. In fact, each transition causes a 
requirement violation. 

As we stated in Section 4.d, a user requirement violation is shown by an event with or without 
invariants. Therefore, in Table 2 we show the transitions of the automaton as the “Event/Invariant” 
column and we split the column up into attributes indicated by distinct sub-columns “Attp, p=1..n” (n is 
the number of attributes). To show the fluents of each attribute, we split the Attp column up into sub-
columns indicated by IIi,p. In the “Event/Invariant” column, we show an event as “@T” or “@F” and an 
invariant as “t” or “f”. “@T” means that the value of the fluent is false in the current mode and becomes 
true in the violated mode when the transition fires. Similarly, “@F” means that the value of the fluent is 
true in the current mode and false in the violated mode. “t” means that the value of the fluent is true in the 
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current mode and remains true when the automaton goes to the violated mode. Similarly, “f” means that 
the value of the fluent is false in both modes. “x” denotes that the value of the fluent plays no role in firing 
the transition. Firing a transition indicates the occurrence of a violation and consequently, changes to an 
unsafe/critical mode. 

The proposed tabular automaton is deterministic because each transition of the automaton is derived 
from Relation 17 or 18 and according to Relations (19) to (22), events are mutual exclusive. This means 
that each transition would have just one "@F/@T"; however, there may be a number of invariants, 
indicated by "t" or "f", in which each t/f belongs to a distinct attribute. For example, consider the transition 
“@T f t x” under some fluents of Att1, Att2, Att3, and Att4, respectively. We realize that the system enters 
an unsafe/critical when, (1) the truth-value of the fluent IIi1 changes from false to true (i.e. an event, 
denoted by "@T") and (2) the truth-values of the fluent IIj,2 and fluent IIk,3 stay false and true, respectively. 

Such a specification which shows unsafe or critical (violation) modes, is used to verify run-time 
system operation modes. In addition, it builds a bridge over the gap between the environment events and 
the run-time system operation modes to verify run-time behavior of the system in accordance with high-
level domain-based safety requirements. 

To map the event-based specification of the user requirements violation, stated by the EC formulae 
into the state-based one, stated by tabular automaton, we have derived ingredients of the automaton 
consisting of “@T/@F”, “t/f” and “Enter mode IIi,p” from predicates of the EC formulae consisting of 
compound predicates in Table 3. Now, we deal with verifying the derivations. 

 
     [~HoldsAt(IIi,p ,τ) ∧ ~HoldsAt(IIi,p ,τ+1)] ≡ "IIi,p = f"                                         (25)             

 
On the one hand, according to the semantics of the automaton mentioned above, the right hand side of 
Relation (25) means that the value of IIi,p is false in the current mode and remains false when the 
automaton goes to its next mode; so, it holds in neither current mode nor the next mode. On the other 
hand, based on Relation (24), the left part of Relation (25) shows a false invariant (Section 3.c). 
According to Section 4.c, this means that IIi,p holds at neither the τth nor the (τ+1)th occurrence of Attp. If 
we think of the system operation as an attribute where each specific operation mode is an occurrence of a 
system operation, "τ" and "τ+1" will indicate two consecutive system operation modes. Accordingly, the 
left hand side of Relation (25) means that IIi,p holds in neither the current operation mode (indicated by 
"τ") nor the next operation mode (indicated by "τ+1"). As a result, relation (25) holds.  
 

     [HoldsAt(IIi,p ,τ) ∧ HoldsAt(IIi,p ,τ+1)] ≡ "IIi,p = t"                                             (26) 
 
Relation (26) shows a true invariant that the proof is similar to that of Relation (25).  
 

 
                                                                                                      Table 3. Mapping EC formulae into the tabular                                       

 
 

Event/Invariant 
Att1 … Attn 

Current 
 Mode 

II1,1 … IIi,1 … II1,n … IIk,n 

Violated 
Mode 

m1 @T / @F / t / f / x 
… 

Unsafe/ 
Critical 

… 
… … … 
mk @T / @F / t / f / x 

… 
Unsafe/ 
Critical 

… 

 Compound predicate 
(ingredients of violation formulae) 

Type Transition 
ingredient

1 [~HoldsAt(IIi,p,τ) ∧ 
~HoldsAt(IIi,p ,τ+1)] 

invariant IIi,p = f 

2 [HoldsAt(IIi,p,τ) ∧ HoldsAt(IIi,p ,τ+1)] invariant IIi,p = t 
3 Initiates(α, ΙΙi,p) where α is an action event initiate 

mode ΙΙi,p
4 ~HoldsAt(IIi,p, τ) ∧ HoldsAt(IIi,p, τ+1) event @T(IIi,p)   
5 HoldsAt(IIi,p, τ) ∧ ~HoldsAt(IIi,p, τ+1) event @F(IIi,p)  

Table 2. The tabular automaton specification 
automaton of violations 
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     [Initiates(α , ΙΙi,p)] ≡ Enter mode ΙΙi,p  where α is an action                                  (27)           
 

According to Table 1, predicate “Initiates(α, ΙΙi,p)” asserts, “Event (Action) α initiates fluent IIi,p. 
Since each system operation mode is an instance of the system action, we can think of the system action as 
an attribute, say Attp, where "IIi,p" indicates the ith

 operation mode of the system. This means that 
“Initiates(α, ΙΙi,p)” indicates initiating a system operation mode. In the diabetes system, for instance, if Attp 
indicates the system action, "Initiates(Compute, II3,p)" will indicate that the specific action "Compute" 
initiates the third operation mode of the system action, say the "Computing" operation mode.   

 
     [~HoldsAt(IIi,p, τ) ∧ HoldsAt(IIi,p, τ+1)] ≡ "@T(IIi,p)"                                      (28)                

 
On the one hand, the right hand side of Relation (28) states, “IIi,p is false in the normal mode but it 

changes to true when the system enters its next mode i.e., unsafe/critical mode”. This means, “IIi,p is false 
in the normal mode but it is true in the unsafe/critical mode”. On the other hand, based on Relation (18), 
the left hand side of Relation (28) shows an event. According to Section 4.b, this means, “IIi,p does not 
hold at the τth occurrence of an attribute but it will hold at the (τ+1)th”. In addition, as stated above, the 
start of every operation mode implies a new occurrence of an attribute; so, we can consider “τ+1” as a new 
occurrence of an attribute when “τ” indicates its current occurrence. Accordingly, the left hand side of 
Relation (28) means that IIi,p does not hold in the current mode (indicated by “τ”), but it holds in the next 
mode (indicated by “τ+1”). As a result, relation (28) holds.   

 
     [HoldsAt(IIi,p, τ) ∧ ~HoldsAt(IIi,p, τ+1)] ≡ "@F(IIi,p)"                                        (29) 

 
The proof of Relation (29) is similar to that of Relation (28). 

 
To generate elements of the automaton (the last column of Table 3) from the compound predicates 

(the second column of Table 3), we present an algorithm in Fig. 5 where function “GenerateElement( )” is 
called for each compound predicate of an EC formulae. The function gets a compound predicate as an 
input and generates an element of the automaton as an output, i.e. “@T/@F”, “t/f”, and “Enter mode IIi,p”. 
The automaton, showing the state-based specification of user’s requirements violation, is used to design 
the run-time monitor. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The algorithm to generate the tabular automaton elements 
 

6. DESIGNING MONITOR (STEP 4) 
 

To design the monitor, we deal with the design of a tabular automaton using State Design Pattern. This 
pattern has already been used for implementing automata [27]. The pattern is suitable for objects whose 

element GenerateElement(cmp: compound)  
     e1, e2, e3, e4, e5: element 
     e1:= “IIi,p=t”,  e2:= “@F(IIi,p)”, e3:= “IIi,p=f”,  e4:= “@T(IIi,p)”, e5: “Enter mode ΙΙi,p” {         
   p1:= GetPredicate (cmp);      // take the first predicate of the compound predicate 
   p2:= GetPredicate (cmp);     // take the next predicate of the compound predicate 
       switch (p1) { 
            case “HoldsAt(IIi,p, τ)”:  
                    if (p2 =“HoldsAt(IIi,p, τ+1)”)  then return e1; 
                    if  (p2 = “~HoldsAt(IIi,p, τ+1)”) then return e2;  
            case “~HoldsAt(IIi,p, τ)”: 
                    if (p2 =“~HoldsAt(IIi,p, τ+1)”)  then return e3; 
                    if (p2 =“HoldsAt(IIi,p, τ+1)”)  then return e4;                   
            case “initiates((Eventi,p)τ ,IIi,p)”: then return e5; 
                       }                    // end of switch  
 } 
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behaviors change at run-time [14, 28] i.e., the object behavior depends on run-time events. In addition, the 
pattern indicates run-time polymorphism i.e., an object behavior is a function of its state. Therefore, we 
can use the pattern as a method to design the tabular automaton automatically and monitor run-time 
behavior of software, in accordance with high-level events.  

The pattern consists of an abstract class and some concrete classes where the former takes the role of 
an interface and the latter takes the role of a mode. The abstract class includes the signature of methods as 
well as a method to control switching between concrete classes where concrete classes include the 
implementation of signatures. We include a signature for each “@T/@F” of the automaton in the abstract 
class and implement its signatures in the concrete classes. 

As Table 2 shows, each normal mode may have more than one next state (unsafe/critical) under 
distinct events. Therefore, a concrete class has as many methods as the distinct events that happen in one 
mode. Passing from an operation mode of automaton to another one is indicated by switching from a 
concrete class to another one via the interface.  

The abstract and concrete classes constitute the monitor program. When an environment event 
happens, the monitor takes the normal (current) state of target software and the event and switches to the 
corresponding class using the handler method in the abstract class. In the concrete class, the corresponding 
method of the event verifies the current state of the target software against the corresponding violations. 
Then, the monitor issues a warning message of violation if it finds any.  

For example, to design a monitor based on tabular automaton shown by Table 4, we consider an 
abstract class and three concrete classes S1, S2, and S3 where S1 consists of two methods (a method for 
each event) and S2 and S3 consist of one method (Fig 6.). When, for instance, an environment event 
happens and the target software enters the state S1, the monitor takes the state and switches to class S1 via 
the state handle method in the abstract class. If the current event is “@T(fluent1)” or ”@F(fluent2)”, the 
method “fluent1()” or ”fluent2()” in class S1 takes control and verifies invariant “fluent2”/”fluent1” 
against “f”. Then, the monitor will issue a warning message of violation if it finds a matching case. 

 
7. CASE STUDY: CIIP SYSTEM 

 
In this section, to show the effectiveness of our approach, we first introduce the CIIP safety-critical system 
[15] and then apply the steps of our approach to design a monitor for the system. The system is used for 
diabetics suffering from “Type 1 Diabetes” called youthful sugar and emerges in all ages, even though 
children, young people, and ages of before thirty are usually afflicted with the disease [15]. The CIIP 
system is intended to be worn continuously by a diabetic and the system administers regular doses of 
insulin based on regular sampling of the wearer’s blood-sugar level. Inspired by [15], we have shown the 
software faults of the CIIP system consisting of computational, algorithmic, and timing in Fig. A.1 (leaf 
nodes) in the appendix. In the following subsections, we illustrate the steps of our approach to synthesize a 
monitor for the CIIP system. 

 
a) Specifying domain-based safety requirements 

 
When a physician uses the CIIP system to control a diabetic’s blood sugar, he expects, (1) “Blood 

sugar never falls below 5”, (2) “If blood sugar rises above 5, the system delivers insulin”, and (3) “The 
delivered insulin dose should be adequate”. According to the physician, blood sugar value varies from 1 to 
20. According to the: (1) first requirement, a sugar value below 5 indicates a serious shortfall in blood 
sugar, (2) second requirement, a sugar value more than 10 indicates excess sugar to be controlled, and (3) 
third requirement, the delivered insulin dose by the system must be a value not over 6. Among the three 
mentioned requirements, the violation of the first is critical because it leads to a violent affliction so that 
the system is not able to cope with it and the violations of the second and the third ones are unsafe but 
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remediable. There are two other requirements that are not main requirements of the physician, but are 
imposed by the physical constraints of the system. The first constraint is that, on the one hand, it is not 
feasible to sample blood sugar constantly and on the other hand, the sampling should not be excessively 
delayed. Therefore, the physician suggests 10 minute periods to sample the diabetic’s blood sugar and 
expects that it should be satisfied by the system. The second constraint imposed by the system is that the 
reservoir system may have insufficient insulin to deliver; so, existing insulin should be checked at the time 
of insulin delivery. The violation of both requirements is unsafe because it is reparable. 

 
Table 4.  A sample automaton specification of violations 

 
Current 
mode 

Event/ 
Invariant 

Violated 
mode 

@T f x Unsafe S1 
f @F x Critical 

S2 x @T x Unsafe 
S3 @T t x Unsafe 

 
  

                                                                         Fig. 6. The class diagram for Table 4 
 

 
 
                                                                                                                                   Att4=dose    
                                                                                                                                                                        
                                                                                                                                                                
                        sample:                                                                                                                                    
                     Att1=start                                                                                                                                                                            
                     Att2=sugar                                                                                                                                                                          
                                                    d                                                                                                            
                                                                                                                                                                           
                                                                                                                                                                 
                                                                                                                                                                                                               
                                                                                                                                                                   
 
 
 

 
Fig. 7. The CIIP system model 

 
- Modeling system interactions  

 
If we consider the above five requirements, we can designate five attributes: “Start of blood 

sampling” (Boolean), “Sugar value” (sub-range), “The start time of sampling” (time), “Delivered insulin 
dose” (integer), and “Available insulin” (sub-range), indicated by Att1 to Att5, respectively.  

Based on the designated attributes, we present a model for the system and its environment (Fig. 7). 
The system environment is a diabetic and the system components are input, software, and output devices. 
The timer device sends an interrupt per ten minutes to the input device (blood sensor) to monitor the 
environment. The insulin delivery unit steered by the software component is an output device to control 
the diabetic. Therefore, the CIIP system monitors and controls its environment by means of its 
components. The environment quantity to be monitored is a sample of the diabetic’s blood. The system 
controls its environment through insulin, whose dose is determined by the software component and 
delivered by the output device. The sample quantity has two attributes: start of sampling (Att1), and blood 
sugar (Att2). Furthermore, insulin quantity has dose attribute (Att4). In addition, the system has two local 
attributes: time (Att3) and available insulin volume (Att5). While the system acquires Att1 and Att2 values 
from the environment, the environment acquires the Att4 value from the system. The system mission (i.e., 
main task) is a computation of correct dose value in a timely manner. 

State(abstract class) 
state handler( ); 

abstract fluent1( ); 
abstract fluent2( ); 

 
Environment  

 
 
 

Diabetic 
 
 
  

                       

                                                                          
                                                                                                    

                        H1(t,s)                         O                                                          
    
                                                                                                                         
                                                                                                    
                                                                                                    

      Att3= time                                                        
                                                                                                     
                                                                                                    

                                                              
                                                                        Att5= Available    
                                                        
                                      H2(t)    

                                                                   H3(Ava) 

blood  
sensor 

timer 
 

insulin 
delivery 
device 

insulin 
reservoir 

reservoir 
indicator 

S 
O 
F 
T 
W 
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R 
E

 
Environment 
   
    

 
    Diabetic 
 
 

M 
O 
N 
I 
T 
O 
R 

S1(Concrete Class) 
fluent1(){…} 
fluent2() {…} 

S2(Concrete Class) 
 

fluent2(){…} 

S3(Concrete Class) 
 

fluent1(){…} 
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-Data abstraction 
 

The blood sensor converts Att1 and Att2 to physical value H1(t,s) and the reservoir sensor converts 
Att5 to physical value H3(Ava), and they then pass the values to the system software component. The 
software component computes the output value, which is used by the insulin delivery device to determine 
the value of Att4. The monitor program receives four values H1, H2, H3, and O from the system devices 
and the current system state from the software component to analyze them in accordance with safety 
requirements. 

Based on the problem domain of the CIIP system, we first partition the values of each attribute into 
some intervals (Column “Intervals” of Table 5) and determine their indicators (Column “Indicators” of 
Table 5). Consider Att2, for instance; according to the problem domain of the CIIP system, Att2=[1..20] 
(the second row of Table 5) indicates the set of values of blood sugar where values 5 and 11 denote its 
boundary values. Accordingly, Att2 is partitioned into three intervals I1,2, I2,2 and I3,2 and logical variables 
low, normal, and high, indicated by II1,2, II2,2, and II3,2, are considered as their indicators, respectively (the 
second row of Table 5). Therefore, low, normal, and high are the abstract values that indicate concrete 
values 1 to 4, 5 to 10, and 11 to 20, respectively.  

Similarly, according to the problem domain, the attribute Att5=[0..100] (the fifth row of Table 5) 
indicates available insulin in the system reservoir. The available insulin should not be less than the 
computed dose. Therefore, the computed dose is a boundary value for Att5. Based on this boundary value, 
we partition Att5 into intervals I1,5=[0..dose) and I2,5=[dose..100].  

 
Att2 = {1 , . . . , 5 , . . . , 10 , . . . , 20} , I1,2 = [1 , . . . 5) , I2,2 = [5 , . . . , 11) , I3,2 = [11 , . . . , 20] 

 
-Specifying events, invariants, and safety requirements 

 
Considering Relations (7) and (8) and Relations (15) and (16), we determine events and invariants that 
violate the user’s safety requirements(Column “Violations” of Table 5). Consider abstraction on the 
“blood sugar” attribute, indicated by Att2 and its indicators in the second row of Table 5, for instance. 
Connected with Att2, the requirement “blood sugar must be normal” is violated if blood sugar falls below 
normal, indicated by (Event1,2)τ=[~(II1,2)τ ∧(II1,2)τ+1] (violation V1,2 in Table 5). In addition, connected with 
Att2, the invariant (In2,2)τ=[(II2,2)τ ∧ (II2,2)τ+1] violates the requirement if (Event2,4)τ=[~(II2,4)τ ∧ 
(II2,4)τ+1] happens (violation V2,4 in Table 5) and the invariant (In3,2)τ=[(II3,2)τ ∧ (II3,2)τ+1] violates the 
requirement if event (Event1,4)τ=[~(II1,4)τ∧(II1,4)τ+1] happens (violation V3,4 in Table 5). Violation V2,4 
states that the system was going to deliver insulin while the blood sugar was normal and violation V3,4 
states that the system was not going to deliver sufficient insulin while the blood sugar was high. 

  According to Section 3.d, a safety requirement, indicated by Si,p, is represented as ~(Eventi,p)τ if 
(Eventi,p)τ is a violation; so, connected with V1,2, S1,2=~(Event1,2)τ is a safety requirement. Also, according 
to Section 3.d, (Eventi,p)τ ∧ ~(Inj,q)τ is a safety requirement if [(Eventi,p)τ ∧ (Inj,q)τ] is a violation; so, 
connected with V2,4 and V3,4, S2,4=(Event2,4)τ ∧ ~(In2,2)τ and S1,4=(Event1,4)τ ∧ ~(In3,2)τ are two safety 
requirements, respectively. S1,2 assures that blood sugar has not fallen below normal, S2,4 assures that the 
system has not delivered insulin when the blood sugar has been normal, and S14 assures that the system 
has delivered sufficient insulin when the blood sugar has been high. 

Similarly, we determine events and invariants for other sets and based on these, we specify the 
violations of the user requirements of the CIIP system (the last column of Table 5). In column “Formulae” 
of Table 5, the first part of the formulae indicates an event and the second one (if exists) indicates an 
invariant. According to the problem domain, among the seven violations that we have described in the last 
column of Table 5, V1,2, V1,4, and V2,4 are critical because they cause blood sugar to fall below 5, leading 
to irremediable problems, and other violations are unsafe because they lead to reparable problems. 
Negation of the violations constitutes safety requirements for the CIIP system. 
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Table 5. Domain-based specification of user requirements violation in the CIIP system  
 

Violations p Attp Type Intervals Indicators 
Name Formulae Description 

1 
start Bool Att1 =[false, true] 

I1,1= [false], I2,1 = [true] 
II1,1 = idle, 
II2,1 = start V1,1 

[~(II2,1)τ∧(II2,1)τ+1] ∧ 
[(~II2,3)τ∧(~II2,3)τ+1] 

Sensor is early in 
sampling: unsafe 

2 
sugar {1..20} 

Att2 =[1..20] 
I1,2=[1..5), I2,2=[5..11), 
I3,2 = [11..20] 

II1,2=low, 
II2,2=normal, 
II3,2=high 

V1,2 [~(II1,2)τ ∧(II1,2)τ+1] 
Diabetic’s sugar has 
fallen: critical 

 
3 

time Integer 
Att3 = [1..) 
I1,3= [1..10), I2,3= [10] , 
I3,3= [11 ..) 

II1,3=premature,
II2,3= timely, 
II3,3 = belated 

V1,3 
[(II2,3)τ∧(~II2,3)τ+1] ∧ 
[(~II2,1)τ∧(~II2,1)τ+1] 

Sensor is late in 
sampling: unsafe 

V1,4 [~(II3,4)τ∧(II3,4)τ+1] 
Pump is going to 
deliver overdose 
insulin: critical 

V2,4 
[~(II2,4)τ∧(II2,4)τ+1]  
∧[(II2,2)τ∧(II2,2)τ+1]  

Pump is going to 
deliver unnecessary 
insulin: critical 

4 

dose Integer 
Att4 =[0..) 
I1,4=[0], I2,4=[1..6),  
I3,4 =[6 , . . .) 

II1,4=zero, 
II2,4=ordinary, 
II3,4=over 

V3,4 
[~(II1,4)τ∧(II1,4)τ+1] 
∧[(II3,2)τ∧(II3,2)τ+1]  

pump delivers short of 
insulin: unsafe 

5 
volume {1..100} Att5=[0..100] 

I1,5=[0..dose),I2,5=[dose..100]
II1,5=insufficient
II2,5=sufficient V1,5 

[~(II2,4)τ∧(II2,4)τ+1] 
∧ 

[(~II2,5)τ∧(~II2,5)τ+1] 

Reservoir has 
insufficient insulin: 
unsafe 

 
 

b) Specifying event-based safety requirements 
 

As stated in Section 4, in order to present the event-based specification of safety requirements, we 
should determine fluents in the CIIP system. According to Section 4.a, we show each interval indicator in 
the CIIP system as a fluent. Table 6 shows fluents for those indicators of the CIIP system which play a 
role in the user requirements violation. These appear in column “Formulae” of Table 5.  

 
Table 6. Description of used fluents in the CIIP System 

 
 Fluent II Description: Value 
1 start II2,1 start of sampling:  true if started 
2 low II1,2 blood sugar fallen: true if  sugar <5 
3 normal II2,2 blood sugar normalized: true if 4< sugar<11  
4 high II3,2 blood sugar rose: true if sugar>10 
5 timely II2,3 time of sampling: true if time = 10  
6 zero II1,4 no dose is  deliverable: true if dose = 0  
7 ordinary II2,4 dose delivery is normal: true if 0<dose<6   
8 over II3,4 dose delivery is over: true if dose >5 
9 sufficient II2,5 available insulin in reservoir: true if dose≤ available 

 
 

Table 7. The event-based specification of violations in the CIIP system 
 

Name Description Violation Formulae 

V1,1 
early 
sampling  

Initiates(@T(start), Unsafe)←  
[HoldsAt(~start,τ) ∧  HoldsAt(start,τ+1)]∧  [HoldsAt(~timely,τ) ∧ 
HoldsAt(~timely,τ+1)] 

V1,2 
blood sugar 
falling Initiates(@T(low), critical)←  [HoldsAt(~low,τ) ∧  HoldsAt(low,τ+1)] 

V1,3 late sampling 
Initiates(@T(timely), Unsafe)←  
[HoldsAt(timely,τ) ∧  HoldsAt(~timely,τ+1)]∧  [HoldsAt(~start,τ) ∧ 
HoldsAt(~start,τ+1)]  

V1,4 overdose delivery   Initiates(@T(over),Critical) ←  [~HoldsAt(over,τ) ∧  HoldsAt(over,τ+1)]  
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Table 7. Continued. 
 

V2,4 
needless dose 
delivery  

Initiates(@F(ordinary),Critical)← [HoldsAt(~ordinary,τ) ∧ 
HoldsAt(ordinary,τ+1)] ∧  
[HoldsAt(normal,τ)∧ HoldsAt(normal,τ+1] 
 

V3,4 short of dose delivery Initiates(@T(zero),Unsafe) ← 
 [HoldsAt(~zero,τ) ∧ HoldsAt(zero,τ+1)] ∧ [HoldsAt(high,τ) ∧ HoldsAt(high,τ+1)]  

V1,5 Insufficient dose 
Initiates(@T(ordinary),Unsafe)←  
[~HoldsAt(~ordinary,τ) ∧ HoldsAt(ordinary,τ+1)] ∧  
[HoldsAt(~sufficient,τ)∧ HoldsAt(~sufficient,τ+1)]  

 
Table 8. The tabular automaton specification of violations in the CIIP system  

 
Name Current 

mode 
Violation (Event / Invariants) 

start  timely  low    normal  high  zero    ordinary   over   sufficient 
Violated 

Mode 
V1,1 
V1,3 

Inactive @T 
f 

f 
@F 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

Unsafe 
Unsafe 

V1,2 Sampling - - @T - - - - - - Critical 
V1,4 Critical 
V2,4 Critical 
V3,4 Unsafe 
V1,5 

Computing 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- 
t 
- 
- 

- 
- 
t 
- 

- 
- 

@T 
- 

- 
@T 

- 
@T 

@T 
- 
- 
- 

- 
- 
- 
f Unsafe 

 
- Specifying events, invariants, and safety requirements 

 
As we stated in Sections 4.b and 4.c, we specify events and invariants using predicates, “HoldsAt” 

and “Initiates” in EC. Among the events and invariants, those that violate user requirements of the CIIP 
system are our concern, as stated in the last column of Table 5. For each violation in Table 5, a row has 
been intended in Table 7 where its premise part (the right hand side) shows the conditions of the violation 
and its conclusion part (the left hand side) shows the cause and significance of the violation with safety or 
critical. “@T(fluent)” or “@F(fluent)” denotes that the truth-value of a fluent has changed from false/true 
to true/false. The important point to be considered is that each formula in Table 7 ties events (the right 
hand side) to states (the left hand side); this is a bridge that helps us to move to state-based specification. 

 
c) Specifying state-based safety requirements 

 
The CIIP system has four operation modes: (1) “Inactive”, (2) “Sampling”, (3) “Computing” and (4) 

“Delivering” where “Inactive Mode” is an initial mode. As we stated in Section 5, we use the algorithm in 
Fig. 5 to generate the elements of tabular automaton of the CIIP system, i.e., “@T”, “@F”, “t”, and “f” 
(Table 8). Each row of Table 8 corresponds to a row in Table 7. Consider violation V1,1 in Table 8, for 
instance. “@T” under column “start” and “f” under column “timely” have been generated from the first 
and the second compound predicates of V1,1 violation formulae in Table 7, respectively. Note that there is 
no violation of user requirements in the “Delivering” mode and so there is no entry for this mode in Table 
8. 

Each row in Table 8 shows a state-based specification of the violation of a user requirement of the 
CIIP system where column “Violation” indicates the transition makes a violation. As stated in Section 5, 
we decide on the system operation modes thinking of the attributes. According to Table 5, there are five 
attributes that operations should be determined for to specify their values. We designate operation modes: 
“Idle” to specify the values of Att1 and Att3, “Sampling” to specify the value of Att2, and “Computing” to 
specify the values of Att4 and Att5. The specification, “Inactive @T f Unsafe” in the first row of Table 8, 
for instance, states, “When the CIIP system is performing the wait operation (the Inactive mode), if event 
“@T(start)” happens and invariant “timely” does not hold, a violation will happen”. In other words, this 
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specification states, “If the blood sampling event starts early when the system is in the Inactive mode, the 
system violates a user requirement”. 

 
d) Designing CIIP monitor  

 
Based on Table 8, we have depicted a visual automaton of requirements violation in the CIIP system 

in Fig. 8 where each state indicates a mode of the automaton operation. The solid and dotted ellipses 
indicate normal and unsafe/critical modes, respectively. In keeping with the view of normal modes, the 
monitor program for the CIIP system will consist of three concrete classes, “Inactive”, “Sampling” and 
“Computing”, consisting of two, one, and four methods respectively. When the system enters the 
“Inactive” mode, the monitor creates an object of the “Inactive” class. When event @T(start) happens, the 
related method is invoked to check the value of II2,3 (i.e. the fluent “timely”). If it is false, the monitor will 
announce a violation. 

 
                      @T(over) ∨                                            [@T(zero)∧high] ∨                            [@T(start)∧~timely]                                                     
                      [@T(ordinary) ∧                                       [@T(ordinary)∧                                   
    @T(low)        normal]                                                    ~ sufficient]                                     ∨ [@F(timely)∧~start]                                            
                                                                                                                                                                                              

 
 

Fig. 8. A visual automaton of violations in the CIIP system  
                                                                                                                         
 

                                     
                       
 
    
clock    sensor    pump      
      
  
  
  
                                              initiate                  initiate 
                                                                                                              start                
                                                                                                   
                                                   10 mins.                                                                       
                                          timely                          timely                start[premature] 
                                                                                                                                                          
                                                                           timely[~start] 
                                                                                                                                                                                                              
                                                                                                                     low                                                                           
                                                                                                                                                      
                                                                                                                                                                                                                        
                                                                                                                                  zero[high] 
                                                                                     
                                                                                                                  ordinary[insufficient]                      
                                                                                                
                                                                                                                                                          
                                                                                                                                          over                                          
                                                                                                                                                    
                                                      

 
 

Fig. 9. The event tracing sequence diagram of violations in the CIIP system 
 

Figure 9 shows the sequence diagram of the monitor behavior. When an actor, i.e., “Clock”, “Sensor”, 
or “Pump” generates an event, the monitor, StateManager, creates an object of a concrete class and 

Sampling 

Computing 

State 
(Interface) 

Inactive 
 

Sampling 
 

Computing 
 

unsafe/ 
critical 

StateManager 
S=CurrentState 
Switch(Request) 

Critical 
Unsafe Inactive
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delegates the control to the related method. The method checks related invariants and returns a message to 
the StateManager class. If the message denotes an incorrect system behavior, the StateManager creates 
the object of an Unsafe/Critical class and delegates the announcement to the announce method of the 
class. The solid lines indicate sending messages, and dash lines indicate returning ones. 

 
e) Evaluation of effectiveness of the approach 

 
In the previous subsections, we employed three steps in processing a diabetic’s safety requirements in 

order to derive the monitor. In this section, we evaluate the effectiveness of these steps. (1) the 
effectiveness of requirements documentation. Related to safety-critical systems, the system’s expert in the 
application domain usually reviews the requirement documents to ensure that they are consistent and 
correct. Such reviews will be effective if the documents are clear and understandable to the expert. To 
meet this feature, in Section 7.a we expressed domain-based safety requirements in the physician’s 
language and dealt with the abstraction of diabetic quantities that were to be monitored and controlled. (2) 
the effectiveness of requirements specification. In the case of safety-critical systems, specification of the 
requirements should be verifiable formally so that one can show its correctness and consistency. To 
provide such a specification, we exploited a first order logic called Event Calculus and mapped the 
documented requirements of the diabetic to EC predicates in Table 7. (3) effectiveness of requirements 
design. By mapping the event-based specification of a diabetic’s safety requirements to an automaton, we 
provided an abstract model that provided an effective design to implement the monitor. To show the 
effectiveness of the design, it was employed to implement the monitor of a diabetic’s safety requirements 
in Section 7.d. 

 
8. CONCLUSIONS AND RELATED WORK 

 
In this paper, an approach to synthesize the run-time monitor systematically in order to verify the run-time 
behavior of safety-critical systems against safety requirements was proposed. Our approach commenced 
with the problem domain at user level, expressing user requirements in his/her vocabulary, and finally 
culminated in synthesizing the run-time monitor in a systematic manner. Table 9 shows an overview of 
our approach where its features are discussed in the following: 

(1) Our approach presented a constructive method to map abstract and high-level safety requirements 
specification to concrete and low-level software activities where event-based and state-based formal 
methods were used. Other approaches map high-level specifications to low-level ones by a direct and 
specific way. The Java-Mac method specified high-level requirements by the MEDL specific language 
and mapped them to the PEDL low-level specific language [29]. Jahanian and Mok specified high-level 
requirements by the Modechart visual and specific language and mapped them to a constraint graph [30] 
where the graph was used by a monitor in order to verify software run-time behavior. Chen and Rosu 
presented a paradigm called monitoring oriented programming (MoP) to combine a high-level formal 
specification with low-level implementations [31]. Although the MoP approach allows one to select a 
high-level formal specification, it annotates the specifications at user-selected places in java programs and 
hence it does not separate the specification from the program implementation to fully satisfy abstraction.    

(2) Deriving the monitor from requirements is a challenge faced by synthesizers of the monitor. To 
face the challenge: (1) The Eagle method used the Eagle logic to specify requirements and synthesized a 
rule based monitor [32]. It extended Mu Calculus to support past and future time linear logic and real-time 
logic and (2) used real-time logic (RTL) for the requirements specification of a real-time system [33, 30]. 
Nevertheless, these approaches have the limitation of unfamiliarity and strangeness of system users with 
formal specification methods. As a result, the users cannot use the methods to state their requirements. 
Therefore, an appropriate specification of requirements is noteworthy and significant. This is why we 
specified the safety requirements of safety-critical systems at user-level and then formalized them. To 
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overcome the limitation, we proposed the formal specification of safety requirements through the domain-
based specification, presented by the language of system experts. By this means, we isolated the system 
from its environment and specified the environment from the user’s point of view.  

Connected with deriving the monitor, the software testing approach also has a method called oracle-
based testing where an oracle program is derived from the requirements specification and is attached to 
the target software under test. The oracle weighs the target program outputs against the expected outputs 
[34]. Leucker and Schallhart in the Section “Runtime Verification versus Testing”, stated that in essence, 
runtime verification can be understood as oracle-based testing, but it does not involve generating a suitable 
set of input sequences to exhaustive testing of the target software [17]. They conclude that run-time 
verification can be considered as a form of passive testing.  

A combination of software testing techniques with run-time verification is an interesting approach 
that has drawn attention. Bouquet et al used software testing techniques to derive test cases from formal 
specifications stated in Java Modeling Language in order to verify run-time safety properties [35]. Also, 
Li and Dang presented algorithms to combine automata with black-box testing in order to verify safety 
properties [36]. Arto et al systematically generated test cases based on the program's input domain and 
then verified execution traces against temporal logic specifications [37]. There are two main approaches to 
generate test inputs automatically, (1) from a model of the system, which is a static approach and (2) by 
executing the program repeatedly, while employing criteria to rank the quality of the test produced, which 
is a dynamic approach. 

(3) Our approach presented an external view, event-based specification, and an internal view, state-
based one, of safety requirements violations; accordingly, it can be used for both event-based and state-
based systems. However, some approaches provide only state-based specifications and implement them in 
an ad-hoc manner [38]. “Eagle” exploiting a state-based approach [39] was extended by the HAWK logic 
[39] in order to support event-based specifications. The HAWK language, which is used to specify both 
high-level specifications and low-level run-time states, has included low-level programming definitions to 
verify java programs. As a result, it requires a lower level of abstraction and clarity for event specification 
in comparison with our approach. However, the domain-based specification of our approach allows a clear 
and transparent specification to be presented according to the system users’ language [28, 33, 40] 
exploiting the event-based approach for real-time systems, and using real-time logic (RTL) for the high-
level specification of the system requirements; so, they were capable of specifying real-time requirements, 
particularly the ordering of events. However, by means of RTL, one can only express the event-based 
specification, hence it is not adequate for state-based requirements. 

 
Table 9. Summary of the proposed approach 

 
 Step name Used method Task Style Feature 
1 Domain-

based 
specification 

data 
abstraction 

designating 
attributes 

manual - definition of events and invariants 

2 Event-based  
specification 

Event 
Calculus 

determining fluents 
and predicates 

automatic -formalization of interactions  
between system and environment  
-formalization of high-level   
requirements violations 

3 State-based  
specification 

tabular 
automaton 

determining states 
and transitions 

automatic -formalization of low-level  
 requirements violations 

4 Monitor  
design 

State Design 
Pattern 

determining classes 
and methods 

pattern-
based 

- facilitation of implementing 
dynamic behavior 
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(4) Using the State Design Pattern, our approach dealt with mapping the abstract system operation 
modes to concrete ones and thus addressed the automatic design of the monitor. This is fulfilled by 
converting the tabular automaton to its concrete counterpart automatically.  

(5) Our approach is a constructive approach that separates a safety-critical system from its 
environment; accordingly, this helps us to extend it to support safety requirements in agent-based systems. 
To this, we suggest: (a) specifying safety requirements by means of KAOS [41] instead of an event-based 
one in the second step of our approach and (b) using the method has been presented in [42] in order to 
map goal-oriented specifications into the tabular automaton in the third step of our approach. The first and 
the fourth steps of our approach have remained unchanged. Using goal-oriented specification of safety 
requirements, one can specify who is responsible for the safety requirements violations. In this 
specification, goals are separated from features. Goals are prescriptive statements of the required and 
expected software behavior, while features are environment specifications such as physical rules, 
constraints and organizational procedures and policies. 

In order to organize the above wide-ranging discussion, we categorize it based on three keystones: (1) 
taking advantage of two kinds of specifications to demonstrate two views of behavior of safety critical 
systems, one to demonstrate interactions of the system to its environment in terms of events, and the other 
to demonstrate its internal behavior in terms of states. Tying these two specifications, we met the 
challenge of mapping high-level specifications into low-level ones in order to derive the monitor from 
high-level safety requirements specification. (2) taking advantage of three hierarchical levels of 
specifications, user level, specification level, and implementation level to provide a constructive method to 
synthesize the monitor. The abstraction of the specification of the safety requirements and the extension of 
the approach usage are two corollaries of the hierarchical level of specifications, as distinct level 
specifications together with the hierarchical structure enable us to support goal-oriented systems. To this, 
one can replace the event-based specification by a goal-oriented one and then map it to an automaton [41]. 
(3) taking advantage of state design pattern to facilitate the implementation of the dynamic behavior of 
objects from abstract operations specified by the tabular automaton. 
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Fig. A.1. The CIIP system fault tree 
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