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Abstract– This paper investigates a 2-dimensional (2-D) analytical magnetic field prediction for 
doubly-salient machines. Using the subdomain technique, the effects of saliency on both the rotor 
and stator structures as well as their interactions are considered. The approach can be used for 
magnetic field calculation in machines with any combination of rotor- and stator-pole number. 
Three different stator winding structures are considered: non-overlapping winding with all teeth 
wound, non-overlapping winding with alternate teeth wound and 2-layer overlapping winding. To 
enable the analytical solution of the governing partial differential equations, the stator and rotor 
iron is assumed to be infinitely permeable and therefore the saturation effects are neglected. The 
proposed approach is used in two case studies: (1) to calculate the armature reaction magnetic field 
distribution of a three-phase slotted brushless machine with surface inset magnets and (2) to 
compute the magnetic field distribution of a four-phase switched reluctance motor. Note that the 
proposed approach cannot be employed in the case of machines with considerable saturation 
effects. The analytical results are compared with those obtained from finite element analyses to 
validate the analytical calculations.           
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1. INTRODUCTION 
 

Doubly-salient machines have saliency on both the stationary and movable parts. Some well-known 
examples of doubly-salient machines are switched reluctance motors (SRMs); slotted brushless machines 
with surface inset permanent magnets (PMs) on movable part; and doubly-salient machines with magnets 
on stator. Similar to other electric machines, doubly-salient machines can be classified, in terms of their 
motion, as rotary and linear in which rotary motion machines are further categorized, according to their 
flux direction, as radial-, axial- and transverse-flux machines. In this investigation, the focus is only on 
radial-flux, rotary motion doubly-salient machines without any magnet on stator. 

Electromagnetic devices can be modelled and analyzed either analytically or numerically. Although 
numerical approaches, such as the finite element method (FEM), are widely employed to analyze the 
performance of designed machines, their applications during the design procedure are limited mostly to 
the final validation stage. This is because numerical techniques are time-consuming, hardly provide 
facilities to systematically change the topology of the under study device and give no physical insight to 
the problem. Therefore, analytical solutions, if possible, are preferred in the inherently iterative design 
process of an electromagnetic device. Despite the mentioned advantages of analytical techniques, they, 
unlike numerical techniques, are normally incapable of accommodating the saturation effects of nonlinear 
media and have less flexibility to solve problems with complex geometries.  
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Slotted brushless machines with surface inset magnets have a doubly-salient structure where the 
stator slots house the windings and the magnets are normally placed between two adjacent rotor saliencies. 
Since the relative permeability of PMs is close to unity, the machines are electro-magnetically deemed as 
double-salient despite the cylindrical appearance of the rotor. Brushless PM machines having surface inset 
magnets have several advantages compared to those having surface mounted magnets due to the presence 
of the iron inter-poles. Some of them include: better rotor mechanical robustness, especially at higher 
speeds; lower PM eddy current losses; the ability to develop reluctance torque; higher quadrant- per 
direct-axis inductance ratio; and a wider flux weakening region.  

There is an increasing number of studies reported in the literature dealing with two-dimensional (2-
D) analytical magnetic field calculations of brushless PM machines [1]-[50]; however, just a small number 
of them concern the surface inset magnet structure [42]-[49]. The magnetic field of brushless PM 
machines originates from two different sources: magnets and armature winding current. One of the 
applications of this study is the armature reaction field calculation of slotted brushless machines equipped 
with surface inset magnets. Zhu et al. [42] have presented an analytical open-circuit magnetic field 
calculation for slotless brushless machines with surface inset magnets having radial magnetization. 
Rahideh and Korakianitis [43]-[44] have extended the work proposed in [42] to other magnetization 
patterns such as parallel and Halbach. Note that [42]-[44] have reported the open-circuit magnetic field 
computation for slotless stator machines. The open-circuit magnetic field calculation of slotted brushless 
machines with radially magnetized surface inset magnets has been reported in [45] where the depth of 
stator slots is assumed to be infinite. Although it has taken into account the effects of double-salient 
structures, only the open circuit magnetic field has been investigated. Boughrara et al. [46] have presented 
both open-circuit and armature reaction field calculations of brushless PM machines having surface inset 
or surface mounted magnets using the Schwarz-Christoffel transformation; however, the approach is 
deemed more numerical than analytical. Analytical armature reaction field calculations for slotless 
brushless machines equipped with inset magnets have been reported in [47]. The analytical magnetic field 
computations of slotted brushless machines having surface inset magnets can be found in [48] and [49]. 

The switched reluctance motor is one of the simplest doubly-salient motors from a manufacturing 
viewpoint but one of the most challenging machines from the modelling perspective. The stator slots of 
radial-flux, rotary motion SRMs normally accommodate non-overlapping (concentric) windings while 
rotor has neither winding nor PM. Therefore unlike brushless PM machines, the only source of the 
magnetic field in SRMs is the stator winding current.  Some of the advantages of SRMs include simple 
manufacturability, cost effectiveness, mechanical robustness, relatively high power density, high speed 
operation capability, four-quadrant operation capability with unidirectional current, flexible and versatile 
drive features, negligible mutual inductance between phase windings, high short-term overload capability, 
fault tolerant capabilities and hazard-free operation. Despite these outstanding features, SRMs suffer from 
a number of drawbacks such as high torque ripples, sensitivity to air-gap length and therefore to rotor 
eccentricity, producing noise, requirement of a converter even for constant speed applications and 
necessity of magnetic saturation to maximize power density. In addition, the motor inductance is a 
function of both rotor position (due to rotor saliency) and the excitation current (due to iron saturation) 
which increases the complexity of high performance controllers. The theory of switched reluctance motor 
controllers is not as well-known as it is in the case of other motors such as induction or brushless PM 
motors. Owing to these unique features, SRMs found their applications in some critical cases – such as 
aircraft actuators, coolant pump in nuclear power plants, and electric vehicles – where high reliability in 
hazardous environment is a vital factor. Due to the significance of switched reluctance machines in such 
crucial applications, their design and analysis require special attention. It should also be noted that the 
modelling of switched reluctance machines is more challenging compared to that of induction or brushless 
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PM machines because, first, the magnetic saturation of rotor/stator back-iron necessitates nonlinear study, 
especially at aligned rotor positions and second, the coupling between the flux linkage, phase currents and 
rotor position increases the complexity of SRM modelling.  

The developed torque of an electric motor can be calculated using different approaches. The most 
common methods are: (1) virtual work which is based on the change in co-energy; (2) Maxwell’s stress 
tensor which requires an accurate calculation of the magnetic flux density distribution at an arbitrary 
surface in the air-gap region; (3) the product of induced back-emf and armature current divided by 
rotational velocity (and neglecting or, if possible, taking into account the magnetic losses) provided that 
the back-emf and armature current are either inherently independent or orthogonal (e.g. in separately 
excited dc motors) or can be transformed into an orthogonal form (e.g. induction motors using the field-
oriented control). In the case of SRMs, the first two approaches are viable for torque calculation but the 
last technique is hardly possible as a simple transformation to provide the required orthogonality is not 
available.  

If the flux-linkage could be expressed as a function of current and rotor angular position, the co-

energy and subsequently the developed torque would be calculated. Torrey and Lang [51] have proposed 

an empirical flux-linkage expression based on experimental data extracted at different rotor positions and 

under a range of current levels. Miller and McGilp [52] used piecewise first- or second-order functions to 

analytically model the nonlinear magnetization characteristics of SRMs in which flux linkage is presented 

against rotor position with current as a parameter (unlike previous attempts [53] in which flux linkage was 

represented as a function of current with rotor position as a parameter). Xia et al. [54] have extended 

Miller model [52] by incorporating the flux linkage expression proposed in [51]. Lovatt [55] has studied 

three modelling techniques for switched reluctance motors: (1) a simple equivalent circuit model based on 

infinitely permeable iron which therefore neglects the saturation effects; (2) a two-model approach 

corresponding to below and above the flux saturating point; (3) the torque is empirically assumed to have 

a linear relationship with current above the saturation point. Lin et al. [56] have developed an analytical 

dynamic model for switched reluctance motors in which the flux linkage has been expressed by multiple 

decoupled one-argument functions. None of the abovementioned researches [51]-[56] considered a 2-D 

analytical model. 

As mentioned before, another approach of torque calculation is based on Maxwell’s stress tensor 

integral which requires an accurate calculation of the radial and tangential components of the magnetic 

flux density distribution at an arbitrary surface in the air-gap region. Lubin et al. [57] have presented a 2-D 

analytical magnetic field calculation in the air-gap of cylindrical electric machines considering slotting 

effects. The analytical model is applicable to electric machines having only rotor saliency since the stator 

is assumed to be cylindrical; therefore the proposed model cannot accurately calculate the magnetic field 

distribution of doubly-salient machines such as switched reluctance machines or slotted brushless 

machines with surface inset magnets. The applications of SRMs in electric vehicles have comprehensively 

been investigated in [58]. Useful information on the optimal design of SRMs can be found in [59]. The 

effects of non-uniform air-gap on SRM noise problems have been investigated in [60].  

In this paper, a 2-D analytical magnetic field calculation is proposed for double-salient machines. The 

derived analytical expressions can be used to calculate the armature reaction field of slotted brushless 

machines with surface inset magnets or the magnetic field of switched reluctance machines if the flux 

density remains below the saturation point. Even in the case of switched reluctance machines under 

saturation effects, the approach can be employed to analyze the unaligned rotor position which is difficult 

to be accurately investigated using conventional magnetic equivalent circuit methods. 
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2. PROBLEM FORMULATION 
 

To analytically calculate the magnetic field distribution of a doubly-salient machine, the following steps 
are normally performed: 
1. Make a set of assumptions to enable the analytical solution. 
2. Divide the problem domain into a number of subdomains according to the assumptions, the geometry 

and the electromagnetic properties of each part of the machine. 
3. Derive the governing partial differential equations (PDEs) for each subdomain based on Maxwell’s 

equations and the assumptions made. 
4. Define a set of boundary/interface conditions based on the subdomains and their geometries. 
5. Represent the winding current density distribution as a function of time and spatial position. 
6. Find a general solution for each subdomain to satisfy the governing PDEs and to also have the potential 

to satisfy the boundary/interface conditions. 
7. Impose the boundary/interface conditions to determine the integration constants of the general 

solutions. 
8. Validate the analytical results using the normal finite element method. 
 
a)  Assumptions 
 

In this study the following assumptions are made, 
 End effects are ignored. 
 The magnetic flux density is a 2-D vector with radial and tangential components. Therefore the 

magnetic vector potential has only z-component. 
 The magnetic flux density vector and the magnetic vector potential are independent of z. 
 All materials are isotropic. 
 One tooth per pole is assumed. 
 The stator and rotor teeth have no tooth-tip. 
 The rotor/stator iron is infinitely permeability; therefore the saturation effects are neglected. 
 The slots and rotor poles have radial sides. 
 Eddy current reaction field is neglected. 

 
b)  Subdomains  
 

The active subdomains consist of stator slots, air-gap and rotor slots due to the infinite permeability 
assumption of the stator and rotor back-iron. In a machine with Ns stator poles and Nr rotor poles, as 
shown in Fig. 1, with non-overlapping windings the number of subdomains is Ns+Nr+1. Indices sl, a and 
ra in Fig. 1 denote slots, air-gap and airspace between rotor iron-poles. In the case of 2-layer overlapping 
windings each slot is radially divided into two sub-regions and instead of index sl, indices slt and slb are 
used for the top and bottom parts of the slots. Subsequently the number of sub-regions will be 2Ns+Nr+1. 
 
c) Governing equations 
 

The following Maxwell equations are employed to initiate the derivation of the governing PDE-based 
equations: 

JH   (1)

0 B  (2)

where H  is the magnetic field intensity vector, J  is the winding current density vector and B  is the 
magnetic flux density vector. The magnetic field intensity and magnetic flux density vectors are related by 
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the following expression in a linear medium. 
HB r0 , (3)
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Fig. 1. Illustrative representation of the subdomains in a doubly-salient machine 

 
where 

0  is the free space permeability and r  is the relative permeability of the medium. Substituting 
(3) in Ampere’s law, (1), yields   
 

JB r0                                                                           (4) 

Based on Gauss’s law for magnetism, (2), B  is divergence free and can be written in terms of the vector 
magnetic potential as 

AB                                                                             (5) 

Substituting (5) in (4) and by choosing Coulomb gauge, 0 A , the governing equation can be expressed 
as 

JA r0
2                                                                        (6) 

In this study, the doubly-salient machine consists of air-gap, airspace between rotor iron-poles and stator 
slots regions with the following Poisson’s and Laplace’s equations: 

JA 0
2  sl                                                                   (7) 

 raaii ,2  0A                                                               (8) 

where superscripts a, ra, and sl denote air-gap, airspace between the rotor iron-poles, and stator slots 
regions, respectively. In the case of 2-D problems in polar coordinates, it is assumed that   ,,0,0 rAzA , 

  tJ z ,,0,0 J  and from (5) 
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Therefore, (7) and (8) can be rewritten as 

z

sl
z

sl
z J

A

rr

A
r

rr 02

2

2

11 


















                                               (10) 



A. Rahideh et al. 
 

IJST, Transactions of Electrical Engineering, Volume 38, Number E1                                                                            June 2014 

38

 .,0
11

2

2

2
raai

A

rr

A
r

rr

i
z

i
z 



















                                                    (11) 

d) Boundary conditions 
 

The perpendicular component of the magnetic flux density vector is continuous at the interface 
between two adjacent media. If the interface is source-free, then the parallel component of the magnetic 
field intensity vector on one side of the boundary is equal to that of the other side. Also, the parallel 
component of the magnetic field intensity vector is zero at the interface of those media adjacent to 
infinitely permeable domains. Therefore the following boundary conditions are expressed: 

0|),(,  raRR
kra rH 

                                                                                 (12) 
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for 

rNk ,,2,1   and 
sNj ,,2,1   where Nr and Ns are respectively the number of rotor and stator poles, 

  is the span angle of rotor airspace opening,   is the span angle of each stator slot, as shown in Fig. 1, 

  is the rotor angular position and   sj Nj /5.02    is the angular position of the centre of slot j.  
 

e) Current density distribution 

Current waveforms of a q-phase machine can be expressed by their Fourier series expansion as 

  qtpwIIti
w

ww ,,2,1)(sin)( 0    
                                                     (20) 

where 
wI  and 

w  are the amplitude and phase shift of the w-th harmonic of the phase current, I0 is the 
average current of each phase, q/)1(2     is the temporal phase shift angle of -th phase with respect 
to the first phase,   is the rotational velocity and p is an integer number which depends on the number of 
rotor poles (Nr) and the motor type. For instance, in brushless PM machines p=Nr /2 whereas in the case of 
switched reluctance machines p=Nr. Therefore, the fundamental frequency of the current in each phase is 
expressed as follows 

pf


21                                                                       (21) 

which in a switched reluctance motor is twice as high as a brushless PM motor with identical number of 
rotor poles. 

In order to relate the currents of all phases to the current density in each slot, the connecting matrix is 
used. It is a sNq  matrix with each entry being 1, 0 or -1 where 0 at the ,j-th entry means there is no coil 
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of phase  in slot j. 1 or -1, respectively, means the positive or negative side of one of the coils of phase  
is located in slot j. In the case of non-overlapping windings with alternate teeth wound, the current density 
vector of all slots can be found as 

cf Atkt CiJ )()(   where 
fk  is the winding filling factor, 

cA  is the wire 
cross sectional area, C  is the connecting matrix,   )()( 1 tJt J  )()(2 tJtJ sN  and  )()()()( 21 tititit qi . 
As is obvious from the expression, the current density of each slot is independent of   since the winding 
is single-layer. 

In the case of non-overlapping windings with all teeth wound, the current density of each slot can be 
found as 
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For 2-layer non-overlapping winding, the coefficients of the current density Fourier series expansion are 
expressed as 
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where  tJ j


 and  tJ j
r

 are respectively the current density of the coils located in the left and right sides of 
slot j (observing from the motor centre) at time t, defined respectively as 
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 and 

rC  and 
C  are 

connecting matrices of the right and left sides of slots, respectively. More details on winding currents are 
given in Appendix A. 
 
f) General solutions 
 

The general solution of the Poisson equation in the airspace between the rotor iron-poles is  

 

  .cos

ln,

2
)5.0(2

1

,,,
0

,
























































rN
ku

u

u

rakra
u

u

r

kra
u

krakra
z r

R
b

R

r
arbrA                                         (25)  

Applying the boundary condition stated in (12) reduces the general solution in the magnet regions to 
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The general solution of the Laplace equation in the air-gap can be represented as 
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In the case of non-overlapping windings, the general solution of the Poisson equation in the stator slots is 
expressed as 
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where the particular solution is 
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Applying the boundary condition stated in (19) yields 
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In the case of machines with 2-layer overlapping windings, each slot is radially divided into two equal-
area regions: the bottom and top parts of the slot which are denoted by superscripts slb and slt, 
respectively. The general solutions in the bottom and top parts of each slot are respectively expressed as 
follows after applying (19) and also the continuity conditions between two media to derive the integration 
constants of the top part of the slots in terms of those of the bottom part. 
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where   222
sslslm RRR   is the radius which radially divides each slot into two equal-area regions and j

bJ 0
 

and j
tJ 0

 are the current density in the bottom and top parts of the slots, respectively. 

The number of integration constants to be determined is UNVNN rs 4  consisting of a
na , a

nb , a
nc  and 

a
nd , (for Nn ,,1 ), sNsl

v
sl
v bb ,1, ,,  (for Vv ,,1 ) and rNra

u
ra
u aa ,1, ,,  (for Uu ,,1 ) where N, V and U 

are the number of harmonics in the air-gap, stator slot and airspace between rotor iron-poles regions, 
respectively.  
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g) Integration constants calculation 
 

Boundary conditions (14)-(17) equate two waveforms with different fundamental frequency for a 
predefined interval. Therefore the correlation technique should be employed [50].  
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and using orthogonality of trigonometric functions, the following NrU equations for Uu ,,2,1   and 

rNk ,,2,1   are obtained 
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The integral solutions are given in Appendix B. 
 Multiplying both sides of (15) by   nsin1 , integrating over    , , i.e. 
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and similarly using orthogonality of trigonometric functions, the following N equations for Nn ,,2,1   
are obtained 
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and the integral solution is represented in Appendix B.  
 Multiplying both sides of (15) by   ncos1  and integrating over    , , i.e. 
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yields the following N equations for Nn ,,2,1  :  
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The solution of the integral is represented in Appendix B. 
 Multiplying both sides of (17) by   ncos1  and integrating over   ,  , i.e. 
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results in the following N  equations for Nn ,,2,1  : 
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The integral is solved in Appendix B. 
 Similarly multiplying both sides of (17) by   nsin1  and integrating over   ,  , i.e. 
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yields the following N  equations for Nn ,,2,1  : 
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and its solution is given in Appendix B. 
 Multiplying both sides of (16) by   2
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results in the following 
sVN  equations for 

sNj ,,2,1   and Vv ,,2,1  : 
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The integral solutions are represented in Appendix B. 
 
Overlapping windings- Based on the continuity condition between the two regions, the integration 
constants of the top part of the slots have been expressed in terms of the integration constants of the 
bottom part. Therefore in the case of 2-layer overlapping windings, (44) needs to be modified as 
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 (47) will be written as 
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and (50) should be modified as 
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Representing all the simultaneous equations in a matrix form yields 
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The sub-matrices rr UNUN 11Λ , NN22Λ , NN23Λ , NN32Λ , NN33Λ , NN44Λ , NN45Λ , 

NN54Λ , and NN55Λ , are diagonal matrices in which sub-matrix 11Λ  consists of Nr identical 
diagonal blocks and sub-matrix 66Λ , consists of Ns identical diagonal blocks. In this study, to construct a 
diagonal or a block-diagonal matrix with identical blocks, one of its blocks is first expressed and the block 
is then replicated to form the matrix. The following convention is used in which the diagonal or block-
diagonal matrix yxΛ  consists of a number of identical blocks yxΛ̂ : 
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The entries of the matrix-form simultaneous equations are represented in Appendix B. The integration 
constants are obtained by solving the simultaneous equations. Having calculated the integration constants, 
the radial and tangential components of the magnetic flux density in all regions can be predicted: 
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In the case of overlapping windings the radial and tangential components of the magnetic flux density in 
the top and bottom of the slots are expressed as 
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3. CASE STUDIES 

 
To show the efficacy of the derived analytical magnetic field expressions, a three-phase slotted brushless 
DC (BLDC) motor with surface inset magnet and a switched reluctance motor are chosen. The brushless 
DC motor has 4 rotor-poles and 6 stator-slots and the switched reluctance motor is an 8/6 machine, i.e. 8-
stator-pole and 6-rotor-pole. Table 1 lists the specifications of both motors. 
 

Table 1. Specification of the studied machines 

Parameter Symbol BLDC motor SRM 
Number of phases q  3 4 
Number of rotor poles rN  4 6 
Number of stator poles sN  6 8 

Stator outer radius oR  (mm) 48 50 

Stator bottom slot radius slR  (mm) 38 42 

Stator bore radius sR  (mm) 26 28 
Rotor outer radius rR  (mm) 25 27.5 
Rotor bottom slot radius raR  (mm) 18 18 

Shaft radius shR  (mm) 8 9 
Stack length L  (mm) 90 100 
Stator slot span angle  (rad/o) 0.440/25.2 0.419/24 
Rotor slot span angle  (rad/o) 1.178/67.5 0.646/37 
Rated phase current peak Im  (A) 10 10 
Number of turn per pole Nturns  102 123 
Number of harmonics in all subdomains N, U, V 200 200 

 
a) Brushless DC motor 
 

The armature reaction field distribution of the brushless DC (BLDC) motor is analytically calculated. 
The motor has a non-overlapping winding structure with all teeth wound. The three-phase armature 
currents are assumed to be in the form of the ideal rectangular waveforms shown in Appendix A. 

The radial and tangential components of the armature reaction magnetic flux density at the middle of 
the air-gap are, respectively, depicted in Fig. 2(a)-(b) for the brushless DC motor having non-overlapping 
winding with all teeth wound at 0t  and 4 t  radians. Note that due to the symmetry only half of 
the 360o-spatial position is illustrated.  

The absolute value of the radial component of the flux density maximizes at those locations with 
minimum reluctance, i.e. when the rotor iron inter-poles are aligned with the stator teeth. As evident from 
Fig. 2(a), all four rotor iron inter-poles are partially aligned with slots at 0t . In contrast, only two of 
the rotor iron-inter-poles are fully aligned with the stator teeth at 4 t  radians. The analytical results 
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have been compared with those obtained from FEM and a good agreement between the analytical and 
numerical calculations has been observed.  

The armature reaction flux density distribution of the brushless PM motor having non-overlapping 
winding with all teeth wound at 0t  and 4 t  radians is depicted in Figs. 3 and 4, respectively. In 
both cases the flux density reaches its maximum wherever the rotor iron inter-poles are aligned with the 
stator teeth. As evident from Fig. 3, phases B and C are carrying current at 0t . At 4 t  radians all 
three phases are active since a commutation between phases B and C is taking place, as shown in Fig. 4. 
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Fig. 2. (a) Radial and (b) tangential components of the armature reaction magnetic flux of the BLDC 

 motor at 0t  and 4 t  radians where 40    radians 
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Fig. 3. Armature reaction magnetic flux density distribution at 0t  where 40    radians in the case of the  

brushless PM machine with all teeth wound non-overlapping winding 
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Fig. 4. Armature reaction magnetic flux density distribution at 4 t  radians where 40    radians 

 in the case of the brushless PM machine with all teeth wound non-overlapping winding.  
A commutation occurs between phases B and C 

 



A. Rahideh et al. 
 

IJST, Transactions of Electrical Engineering, Volume 38, Number E1                                                                            June 2014 

48

b) Switched reluctance motor 
 

The magnetic flux distribution of a four-phase switched reluctance motor having 8 stator poles and 6 
rotor poles is analytically calculated. Figure 5a-b respectively show the radial and tangential components 
of the magnetic flux density at two different rotor positions. The solid lines in Fig. 5 correspond to the 
instance in which current is commutated from phase D to phase A. The amplitude of the flux density 
seems to be well below the saturation point of back-iron B-H characteristic and therefore the proposed 
linear analytical solution is valid. However at 24 t  radians with 120    radians, as shown by 
dashed lines in Fig. 5, the magnetic flux density increases and the linear assumption can degrade the 
accuracy depending on the level of saturation. The magnetic flux distribution of the SRM at three rotor 
positions has been illustrated in Figs. 6-8. 
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Fig. 5. (a) Radial and (b) tangential components of the magnetic flux of SRM  

at 0t  and 24 t  radians where 120    radians 
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Fig. 6. Magnetic flux density distribution of the 8/6 SRM at 0t  where 120    radians without  

temporal overlapping current. Commutation between phases A and D 
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Fig. 7. Magnetic flux density distribution of the 8/6 SRM at 24 t  radians where 

 120    radians without temporal overlapping current 
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Fig. 8. Magnetic flux density distribution of the 8/6 SRM at 12 t  radians where 120    radians  

without temporal overlapping current. Commutation between phases A and B 

 
4. CONCLUSION 

 
Accurate magnetic field distribution of an electromagnetic device plays a vital role for its optimal design 
and critical analysis. A 2-D analytical magnetic field calculation has been proposed for doubly-salient 
machines. Comparing the analytical results with their corresponding numerical ones shows the accuracy 
and efficacy of the proposed approach for machines with negligible saturation effects. Even in those 
machines with considerable saturation effects at aligned rotor positions, the proposed analytical solution 
may be used at unaligned rotor positions in which the saturation effects are negligible. The proposed 
analytical magnetic field calculation method has been used in two case studies to illustrate the efficacy of 
the approach.   
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APPENDIX A 
 
Figures A1(a-c) show respectively the ideal phase currents of brushless DC (BLDC) motors, switched reluctance 

motors without temporal overlapping current and switched reluctance motors with temporal overlapping current.  
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Fig. A1(a) Ideal current waveforms of a q-phase BLDC motor; (q-1) phases are conducting at each instant except at 
commutation times; (b) ideal current waveforms of a q-phase switched reluctance motor without temporal 
overlapping current; one phase is conducting at each instant except at commutation times; (c) ideal current 
waveforms of a q-phase switched reluctance motor with temporal overlapping current; one or two phases are 
conducting at each instant 
 
The Fourier series expansion coefficients in the case of BLDC motors are expressed as 
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where 
mI  is the maximum current. For switched reluctance motors without temporal overlapping current, these 

coefficients are expressed as follows: 
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And finally in the case of switched reluctance motors with temporal overlapping current, the Fourier coefficients are 
expressed as 
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The solutions of the integrals are 
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for nv   . 

From Eq. (34) the entries of the sub-matrices on the first row of the matrix-form simultaneous Eq., (56), can be 
found, 
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From Eq. (41) the entries of the sub-matrices on the second row of the matrix-form simultaneous Eq. (56), can be 
found, 
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From Eq. (44) the entries of the sub-matrices on the third row of the matrix-form simultaneous Eq. (56), in the case 
of non-overlapping windings can be found, 
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and in the case of overlapping windings the last two Eq. (B.27) and (B.28), are modified as follows using (53): 
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From Eq. (38) the entries of the sub-matrices on the fourth row of the matrix-form simultaneous Eq. (56), can be 
found, 
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From Eq. (47) the entries of the sub-matrices on the fifth row of the matrix-form simultaneous Eq. (56), in the case of 
non-overlapping windings can be found, 
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and in the case of overlapping windings based on (54) the last two Eq. (B.36) and (B.37), are modified as  
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From Eq. (50) the entries of the sub-matrices on the sixth row of the matrix-form simultaneous Eq. (56), in the case 
of non-overlapping windings can be found, 
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and in the case of overlapping windings based on (55) the last two Eq. (B.44) and (B.45), are modified as  
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