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Abstract– In recent years Fuzzy Wavelet Neural Networks (FWNNs) have been used in many 
areas. Function approximation is an important application of FWNNs. One of the main problems 
in effective usage of FWNN is tuning of its parameters. In this paper several different evolutionary 
algorithms including Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), 
Evolutionary Strategy (ES), Fast Evolutionary Strategy (FES) and variants of Differential 
Evolutionary algorithms (DE) are used for adjusting these parameters on five test functions. The 
obtained results are compared based on some measures by using multiple non-parametric 
statistical tests. The comparison reveals the superiority of some variants of DE in terms of 
convergence behavior and the ability of function approximation.           
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1. INTRODUCTION 
 

In recent years Fuzzy Wavelet Neural Network (FWNN) has been used as one of the most effective 
methods of soft computing. In fact, the structure of FWNN is a Neural Network that has been combined 
by fuzzy rules for dealing with complex problems which have ill-defined conditions and uncertain factors. 
Also, wavelet functions have been utilized in the consequent parts of fuzzy rules. 

FWNN has been used in many different areas such as prediction, reinforcement learning and pattern 
recognition [1-4].  One of the main important applications of FWNN is function approximation [1-4]. In 
order to improve the function approximation accuracy and general capability of the FWNN system, the 
parameters of the FWNN must be adjusted. Several studies have been performed in which different 
variants of EAs have been applied for parameter optimization of FWNNs [1].  

 In this paper several evolutionary algorithms are used for adjusting the parameters of FWNN on 
some test functions and the results are compared.  

The paper is organized as follows: Section 2 introduces FWNN and the evolutionary algorithms used. 
In Section 3 nonparametric statistical tests are briefly described. Experimental results are presented in 
Section 4. Finally, the conclusions are given in Section 5. 
 

2. BASIC CONCEPTS 
 
a) Fuzzy Wavelet Neural Network (FWNN) 
 
In the following, the basic concept of fuzzy wavelet neural network is briefly introduced [1]. The structure 
of fuzzy wavelet neural network could be described as a set of M fuzzy rules. Rule ௝ܴ is defined as 
follows: 
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			 ௝ܴ : ݀݊ܽ	ଵ௝ܣ	ݏ݅	ଵݔ	ܨܫ                               (1)				௝ߠ	ݏ݅	ݕ	݄݊݁ܶ			,௡௝ܣ	ݏ݅	௡ݔ	݀݊ܽ…
 
where ݔ୧ , i=1...n, are the inputs and ݕ	is the output of FWNN. ܣ௜௝ are linguistic terms characterized by 
fuzzy membership functions. In this paper, the Gaussian membership function is used which is defined as: 
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where ܿ௜௝ and  ߪ௜௝ stand for the center and width parameters, respectively. The output of ௝ܴ is calculated as 
follows: 

௝ߠ																 ൌ෍ݓ௝߰௜௝ሺݔ௜ሻ
௡
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where ݓ௝	are the weighting coefficients and  ߰௜௝ሺx୧ሻ stand for the family of wavelets obtained from the 
single Mexican Hat function, ߰ (x)	ൌ ሺ1 െ ሺെ	݌ݔଶሻ݁ݔ

௫మ

ଶ
ሻ. Therefore ߰௜௝ሺx୧ሻ	is calculated as follows: 
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here, ݀௜௝ ,ݐ௜௝ stand for the dilation and translation parameters, respectively. The output of FWNN is 
obtained as follows: 
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So the parameters of FWNN that must be adjusted are	ܿ௜௝, ,௜௝ߪ ,௜௝ݐ ݀௜௝ܽ݊݀	ݓ௝. As we noted earlier, in 
this paper some evolutionary algorithms are utilized for the parameter tuning purpose. The structure of 
each chromosome, B, is as follows: 

ܤ ൌ ൣܿ௜௝	ߪ௜௝	ݐ௜௝	݀௜௝	ݓ௝൧		݂ݎ݋	݅ ൌ 1,… , ݊	ܽ݊݀	݆ ൌ 1,… ሺ8ሻ																																				ܯ,                         
where 

 ܿ௜௝ ൌ 	 ሾܿଵଵ … ܿଵெ …ܿ௡ଵ … ܿ௡ெሿ			, ௜௝ߪ ൌ 	 ሾߪଵଵ ଵெߪ… ௡ଵߪ… ,	௡ெሿߪ… ௜௝ݐ ൌ ሾݐଵଵ … ଵெݐ … ௡ଵݐ …  	௡ெሿݐ

, 		݀௜௝ ൌ 	 ሾ݀ଵଵ …݀ଵெ …݀௡ଵ …݀௡ெሿ	and	ݓ௝ ൌ 	 ሾݓଵ   	ெሿݓ…

For evaluating each chromosome, the Mean Squared Error (MSE) is used as fitness function. 

b) Evolutionary Algorithms (EAs) 
 

A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution [1].  In 
GSA [5] chromosomes are considered as masses which attract each other by gravitational force. The 
chromosome with a heavier mass is a better solution and attracts others more. Therefore, the population 
moves toward the heaviest mass. Evolutionary strategy (ES) [6] is an optimization technique based on 
ideas of adaptation and evolution. It belongs to the general class of evolutionary computation or artificial 
evolution methodologies. In ES each chromosome consists of two parts: object-parameters and strategy-
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In Fig 2, GSA has the best ranking in terms of Mean-Fitness-Evaluations. Also, by looking at Table 2 
which shows the result of post-hoc procedures, it can be seen that GSA rejects all the hypotheses. Thus, 
the GSA is surely the fastest algorithm. FES and ES have the worst ranking and are also rejected in all 
hypotheses. Therefore, they are the slowest algorithms. With the same explanation, it is concluded that the 
variants of DE and GA are faster than FES and ES but are slower than GSA. Based on the STDEV-Best-
Fitness measure in Fig. 2, the GA has the best average ranking but it is not able to reject any hypotheses as 
implied from Table 2. Therefore, it is concluded that there is no significant difference between algorithms 
considering this measure. 
 

5. CONCLUSION 
 
In this paper, the structure of the FWNN model was introduced for function approximation from input–
output pairs. It integrates the advantages of fuzzy concepts, wavelet functions, and neural networks. The 
parameters of FWNN must be adjusted properly before it can be used for function approximation. For this 
task, some evolutionary algorithms (GA, GSA, ES, FES and nine variants of DE) were used and their 
performance based on Mean-Best-Fitness, Mean-Fitness-Evaluation and STDEV-Best-Fitness factors 
were compared using Friedman statistical test. We also plotted the convergence diagram of each 
algorithm. The results show that variants of DE are the winner considering convergence rate and Mean-
Best-Fitness factor. GSA runs faster due to the least average number of Fitness evaluations. The statistical 
tests implied that there is no significant difference between algorithms considering STDEV-Best-Fitness 
measure. So DE is recommended for approximation in situations where the accuracy is the most important 
factor. 
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