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Abstract– As a result of the increasing popularity of social networking websites like Facebook 
and Twitter, analysis of the structure of these networks has received significant attention. The most 
important part of these analyses is towards detecting communities. The aforementioned structures 
are usually known with extremely high inter-connections versus few intra-connections in the 
graphs. In this paper, in spite of most approaches being optimization based, we have addressed the 
community detection problem (CDP) by a novel framework based on Information Diffusion 
Model and Shapley Value Concept. Here, each node of the underlying graph is attributed to a 
rational agent trying to maximize its Shapley Value in the form of information it receives. Nash 
equilibrium of the game corresponds to the community structure of the graph. Compared with the 
other methods, our approach demonstrates promising results on the well-known real world and 
synthetic graphs.           
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1. INTRODUCTION 
 

A social network is a complex graph-based structure composed of individuals called nodes, which are 
connected by one or more specific types of interdependency such as friendship, common interest, financial 
exchange, etc. which are often called edges. Recently, online social networking websites such as 
Facebook, Twitter and etc., have become tremendously popular, because they let people all over the world 
communicate with their friends, send emails, spread opinions on some issues, etc., in the cyberspace 
without in person meetings. These online interactions on the Internet are provided by modern information 
and communication technology (ICT). As a result, the way that Social Network Analysis (SNA) is dealt 
with has been changed completely [1]. 

Graphs have often been considered as a powerful representation tool in studying social networks and 
their properties since the 20th century. Graph vertices and edges are respectively regarded as the 
paradigms of the entities in social networks (e.g. people and the interactions between them). Nowadays, 
the emergence of computational resources, extensive data and the recent rapid expansion of these 
networks to millions or even billions of vertices have produced a deep change in the way graphs are 
approached [2, 3, and 4]. SNA started in the 1930s and since then has become one of the most important 
topics in sociology [1, 5]. Social networks, like many other networks, show several interesting properties 
such as high network transitivity [6], power-law degree distributions [7] and the existence of repeated 
local motifs [8], yet the significant attribute recently under consideration is community structure' or 
`clustering'; the appearance of dense connected groups, modules, clusters or communities of vertices in the 
network graph and sparser connections between them [3]. In its simplest form, community structure refers 
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to the existence of modules or communities with dense inter-connections versus sparse intra-connections.  
A toy example network and its community structure are shown in Fig. 1. 

The word community itself refers to a social context. People naturally tend to form groups within 
their families, work environments and friends. Communities of social networks can be friendship circles, 
groups of people sharing common interests and/or activities, etc. Furthermore, many other networked 
systems including biology and computer science, have built-in communities. This property has high 
applicability and therefore attracts a lot of researchers from different fields. For example, groups within 
the World Wide Web correspond to web pages on the related topics [9], groups in social networks like 
Facebook show knit relationships between their members [10] and they can be used to design reliable 
friend recommendation systems, or groups in a metabolic network represent cycles and other functional 
groupings [11]. In addition, clustering Web clients having similar interests and being geographically near 
each other, can improve the performance of services provided on the World Wide Web [12]. Detecting 
clusters of customers with similar interests in the network of purchase relationships between them and 
products of online retailers (e.g. Amazon 4) can lead to setting up efficient recommendation systems and 
improving business opportunities [13]. Moreover, clustering large graphs can help in creating data 
structures to store the graphs more efficiently [14]. 

During the last decade, a large variety of algorithms have been proposed to solve the problem of 
community detection. However, most of them work based on the structural attributes of the network such 
as number of vertices, degree of each vertex, etc. [8]. In this work we address the community detection 
problem as a game-theoretic approach employing Information Diffusion model and Shapley Value. As the 
results show, our proposed framework performs well in detecting finer community structure of the 
underlying graph. Our main contributions are as follows: 

1. We introduce SID framework to analyze social network communities. In this work we address the 
community detection problem as a game-theoretic approach employing Information Diffusion 
model. To the best of our knowledge, it is the first time that this problem has been formulated in 
the form of Information Diffusion concept and Game theory. The results show that, the proposed 
framework outperforms other rival methods in detecting finer community structure of the 
underlying graph. 

2. We extend the GADM model introduced by Lahiri and Cebrian [15] to achieve a more accurate 
model for Information Diffusion in social networks by defining a mutation operator. We believe 
sometimes, nodes can update their information without contacting other nodes in the network, 
similar to what happens in real life. 

3. We provide an iterative algorithm that is guaranteed to converge to a promising solution. In this 
algorithm, each node of the graph is considered as a selfish agent that tries to maximize its total 
utility. The Nash equilibrium [16] of the game corresponds to the community structure of the 
graph.  

4. In contrast to most of the existing methods, the proposed method does not rely on the structural 
attributes of the underlying network. We use a simple Information Matrix, which stands for the 
amount of information exchanged between agents. This characteristic of our method helps us to 
solve the problem of community detection without a need to consider basic properties of the graph 
such as number of nodes, degree of each node, etc.  

5. There is no parameter setting in the proposed approach as opposed to the other similar methods 
which rely on several parameters. 

The rest of the paper is organized as follows: in Section 2, a brief review of the state-of-the-art 
methods is presented. Then, in Section 3, we describe our proposed framework in detail. Our results on 
different real-world and synthetic datasets are described in Section 4. We conclude the paper in Section 5. 
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3. PROPOSED METHOD 

a) Motivation 

It is necessary for everyone to make a friendship with those who have something valuable to share. 
Informative human-human social interactions motivated us to assign the community formation problem in 
social networks to a play of interactions between their constituents, i.e. people.  

Game theory is a good tool to capture both the behavior of individuals and strategic interactions 
among them [14], because it can model strategic interactions between rational, autonomous and intelligent 
agents mathematically. In this study, based on the work done by Alvari et al. [25] we consider the 
community detection problem as a game in a multiagent environment and ascribe each vertex of the 
underlying graph to an agent. These agents try to form communities based on their Shapley values by 
joining to communities with total useful information for them. To quantify the information exchanged 
between agents, we use the formulation in [15]. Finally, the Nash equilibrium of the game corresponds to 
the clustering of the network. In the next section, we first explain the information diffusion concept used 
in our framework and then our game-theoretic approach is explained in detail. 
b) Information Diffusion in Social Networks 

Diffusion processes take place in social networks and we can use these processes to model different 
phenomena in the world surrounding us such as the spread of computer and human viruses, and the 
information about an invention or idea. Obtaining accurate information about these processes is difficult; 
therefore, we will use diffusion models to describe their behavior. A diffusion model probabilistically 
indicates a process of diffusion takes place and spreads through a social network [15]. 

Information diffusion is a special kind of diffusion process in which information spreads through 
vertices of a social network. Here, information is considered as specific details about an innovation or an 
idea. There exist two well-known probabilistic models for information diffusion, the Independent Cascade 
model and the Linear Threshold model [18, 26, 27]. Recently, Lahiri and Cebrian [15] proposed a new 
model based on canonical Genetic Algorithm [28] paired with Holland’s hyper-defined objective functions 
[29], namely GADM (Genetic Algorithm Diffusion Model). In the following, formal definition of the 
diffusion model is given.  

Definition1.A diffusion model maps current state vector of a vertex to a new state vector. Given a 
graph ࡳ ൌ ሺࢂ, ࢜ࡿ ሻ and a state vectorࡱ

ሺ࢚ሻ for every vector ࢜ ∈  at time ࢚, this model outputs a new state ࢂ
vector ࢜ࡿ

ሺ࢚ା૚ሻ for every vertex at time ࢚ ൅ ૚ based on the state of all interacting vertices [15]. 
We now explain the GA Diffusion Model (GADM) [15] which we will use in our proposed 

community detection algorithm. Lahiri and Cebrian showed that canonical Genetic Algorithm, which uses 
binary string chromosomes and one-point crossover, can be used as a model for information diffusion 
process. Their work deals with dynamic social networks where a set of vertices ࢂ ൌ ሼ࢜૚, … ,  ሽ interacts࢔࢜
over ࢀ time periods. Furthermore, a mapping exists between these individuals and chromosomes in the 
GA population. Chromosomes are state vectors of individuals at each time step ࢚. These state vectors are 
binary string with length ࢼ. Initial state vectors can be set to zero or one can use a random distribution to 
initialize them. Additionally, an objective function ࢌሺ࢞ሻ which assigns a score to each vertex state vector 
is needed. For each edge ሺ࢛, ࢜ሻ in the social network at time step ࢚, logic of canonical genetic algorithm is 
applied to the corresponding chromosomes in the GA population. GADM algorithm is shown in 
Algorithm 1. In this algorithm, state vectors are modified and adopted based on crossover operator and 
objective function, resulting in the occurrence of diffusion process in the social network. Obviously, we 
have a missing component here, and that would be an objective function to bring meaning to the mapping 
between the state vectors of a node and chromosomes in GA population. 
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There is a key difference between GADM and earlier studies on information diffusion such as [18] 
[26] [27]. GADM is able to model the propagation and spread of multiple ‘units’ of information from 
individual to individual. These different units can interact in non-linear and complex ways based on a 
randomly generated HDF in order to affect the total ‘information value’ of each individual. The objective 
is to estimate the average information value of each node after multiple random HDFs and state vector 
initializations, in order to determine whether every individual in our social network is positioned to 
receive the same amount of information as a result of their interactions with other individuals. 

Lahiri and Cebrian [15] used GADM to model information flow between people as they exchange 
emails. To test their method they used Enron email dataset. Their results indicated that only a small 
portion of vertices in a social network receive more information than others, regardless of how much they 
start with. This term is called ‘information elitism’ and they showed that it is not simply related to a trivial 
network property such as degree. To put it simply, one might assume that a vertex with high income 
degree may contain more information than others, but the correlation between the final information value 
of nodes and their degree shows absolutely the opposite. As a result, a community detection method based 
on this feature, is independent from network structure.  

c) Framework 
 

In this section, we provide our proposed information diffusion model (Extended GADM or 
EGADM), how we use information diffusion in our model and rigorous mathematical formulation of our 
framework. We need to introduce some notations and parameters used in our work as shown in Table 1. 

 

Table 1. Definitions of symbols 

Sym. Definition 
G Undirected  and unweighted graph 
n, m Number of nodes and edges 
S Set of strategies of all agents 
si Strategy of agent i
௜ߔ Shapley value of agent i 
I Information Matrix 
Iij Information that agent i received from agent j 
 ௜௝ Equals 1 if agents i and  j are in the same communityߜ

 
In order to use ‘information elitism’ phenomena in our method, we have to store information that is 

exchanged between nodes. Each node can either receive information from others or give them new units 
of information through crossover operation. Here, the interpretations of ࢜ࡿ

ሺ࢚ሻand ࢜ࡿ
ሺ࢚ା૚ሻ are different from 

what is actually used in GADM. ࢜ࡿ
ሺ࢚ሻstands for the state vector of node ࢜ before an interaction with node ࢛ 

while ࢜ࡿ
ሺ࢚ା૚ሻ is the state vector of node ࢜ after the interaction with node ࢛. In addition to the crossover 

operator used in GADM, we use mutation operator in order to make the information diffusion model 
stronger. We believe that, sometimes, nodes can update their information without contacting other nodes 
in the network and that is what happens in real life. The new information diffusion model algorithm is 
shown in Algorithm 2. 

To avoid the bias of randomness we run multiple trials with different HDFs and state vectors 
initialization. In each run, we store the information exchanged between two nodes in a matrix called 
Information Matrix I. These values are normalized with respect to the maximum exchanged value after 
each run. What we need over multiple trials is the average of these values which we call ‘average 
normalized information’ or ANI: 
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where superscripts show the information matrix of ith iteration and I is the final Information Matrix. 

Algorithm 2. EGADM 

1. Input: Initialize state vectors of nodes ࢛ and ࢜ to ࢜ࡿand ࢛ࡿ. 

2. Output: New state vector for nodes ࢛and ࢜. 

3. Repeat{ 

4. Set ࢜ࡿ
ሺ࢚ା૚ሻ ൌ ࢜ࡿ	

ሺ࢚ሻ
and ࢛ࡿ

ሺ࢚ା૚ሻ ൌ ࢛ࡿ
ሺ࢚ሻ

. 

5. Select a random crossover point c between ሾ૚,  .ሿࢼ

6. Create ࢟૚and ࢟૛by swapping the tails of ࢜ࡿ
ሺ࢚ሻ

and ࢛ࡿ
ሺ࢚ሻ

 where the tail is defined as all positions including and after index c. 

7. Update state vectors: ࢜ࡿ
ሺ࢚ା૚ሻ ൌ ࢚࢜ࡿୀሼ࢞࢞ࢇ࢓ࢍ࢘ࢇ	 ,࢟૚,࢟૛ሽ ࢛ࡿ ሺ࢞ሻandࢌ

ሺ࢚ା૚ሻ ൌ ࢚࢛ࡿୀሼ࢞࢞ࢇ࢓ࢍ࢘ࢇ	 ,࢟૚,࢟૛ሽ  .ሺ࢞ሻࢌ

8. Do mutation on each bit of ࢜ࡿ
ሺ࢚ା૚ሻ

 and ࢛ࡿ
ሺ࢚ା૚ሻ

 based on mutation probability ࢓ࡼ. 

9. } 

10. Until (All interactions are checked) 

 
Regarding what has been discussed so far, we put each vertex down to a rational agent that just thinks 
about maximizing its Shapley value. In doing so, whenever it is selected from a pool of agents, it 
periodically makes personal decisions while it is involved in the game. Later on this agent decides whether 
to join a new community, leave one of its communities or switch from a community to a new one.  
After all, new Shapley value for the selected agent is calculated according to (2) and its old value is 
replaced by the new one.  

 ௜ሺܵሻݒ ൌ 	
ଵ

௠
∑ ௜௝ߜ௜௝ܫ
௡
௝ୀଵ,௝ஷ௜ 

where ݒ: 2஼ → Թ is a characteristic function that assigns a value to each subset of C. Here C is a 
community which consists of one or more nodes. For this agent the Shapley value is defined as: 

 

 Φ௜ሺݒሻ ൌ 	
ଵ

௡!
∑ ሺݒൣ ௜ܲሺߨሻ ∪ ݅ሻ െ ൫ݒ ௜ܲሺߨሻ൯൧గఢஐ 

where Ω is the power set over C and ௜ܲሺߨሻ is the set of players appearing before the ith player in set ߨ. In 
this framework, the best response strategy of an agent i with respect to the strategies S-i of other agents is 
calculated by: 

 ,௦೔ᇲ⊆ሾ௞ሿΦ௜ሺܵି௜ݔܽ݉݃ݎܽ ௜ݏ
ᇱሻ

The strategy profile S forms a pure Nash equilibrium of the community formation game if all agents play 
their best strategies. In other words, in Nash equilibrium no agent can improve its own utility by changing 
its strategy; that is each agent is satisfied with the current utility: 

 ∀݅, ௜ݏ
ᇱ ് ,௜,Φ௜ሺܵି௜ݏ ௜ݏ

ᇱሻ ൑ Φ௜ሺܵି௜, ௜ሻݏ

Since reaching global Nash equilibrium is not feasible in this game, we used local Nash equilibrium 
[30]. The strategy profile S forms a local equilibrium if all agents play their local optimal strategies. Here 
ls(si) refers to local strategy space of agent i: 

 ∀݅, ௜ݏ
ᇱ ∈ ,௜ሻݏሺݏ݈ Φ௜ሺܵି௜, ௜ݏ

ᇱሻ ൑ Φ௜ሺܵି௜, ௜ሻݏ
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Finally, the algorithm of the proposed method, namely SID, is shown in Algorithm 3. 
 

Algorithm 3.SID 
1. Input: underlying network graph G.

2. Output: community as a final division of G. 

3. Initialize each node of G as an agent. 

4. Initialize community as a set of all communities.  

5. I = EGADM(G) or GADM (G)  //Create Information Matrix 

6. Repeat{ 

7. Choose a random agent from pool of agents. 

8. Choose the best operation among join, leave, switch or no operation 
according to (4). 

9. } 

10. Until (local Nash equilibria is reached) 

 
4. EXPERIMENTS 

 
We have mentioned earlier that the proposed approach can perform well in detecting communities in 
social networks. To illustrate this, we now present our experimental results on the well-studied real-world 
datasets and two popular synthetic networks. We compare our algorithm with three decentralized 
algorithms and one centralized algorithms. We use two evaluation metrics to show the performance of our 
algorithm: Normalized Mutual Information (NMI) [31] and Modularity Q [32]. Table II shows algorithms 
and parameter settings we have used for our experiments respectively. We have implemented all of the 
algorithms in JAVA on a system with 4G of RAM and Intel CPU 2.53 GHz for the purpose of fair 
comparison. 

Table 2. Algorithms used for experiments and their parameters (D=Decentralized, C=Centralized) 

Algorithm Type Parameters 

HA [33] D ݉ ൌ 0.1, ߜ ൌ 0.05 

MMC [34] D ߙ ൌ 2.65, ߚ ൌ 2, ߩ ൌ 0.9, ߤ ൌ 1.08, ߟ ൌ 0.7, ߛ ൌ 0.1 

InfoMap [10] C None 

LPA [35] D None 
 

LPA and HA are different varieties of basic label propagation methods while MMC is a label 
propagation method which uses labels to show information. InfoMap is a centralized method which is 
based on “unfolding” technique. 
 
d) Evaluation 
 

1. Normalized mutual information (NMI) [31]: We often use normalized mutual information to measure 

the similarity between found partition and the ground trust partition. Assume that we have two partitions 

called P and  Q. We form a matrix N in|۾| ൈ  .|ۿ|
Element Nij of the matrix N shows the number of common nodes of the ith community of P and jth 

community of Q. In addition, we show the sum of ith row with Ni. and the sum of the jth column with N.j. 

NMI is in range [0, 1] and is defined as follows: 
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datasets structure. In this case, it is not necessary to run SID on the whole network from scratch and we 
only need to compute information exchanges between newly added nodes and the ones that communicate 
with them. Since community detection is usually a time-consuming task in large social media datasets and 
it becomes worse if an algorithm is not able to deal with relatively small changes. The aforementioned 
feature of SID helps us to overcome this drawback. 

The total order of our framework is ࡻ	ሺࡷ ൈ࢓൅ ࡯ ൈ ࢔ ൈ  ሻ. SID consists of two phases: EGADMࡰ
(Offline) and Game Theoretic Framework (Online). The first part needs ࡻ	ሺࡷ ൈ࢓ሻ where ࡷ is the 
number of multiple runs of EGADM to avoid randomness is. On the other hand, the second part of the 
algorithm needs  ࡻ	ሺ࡯ ൈ ࢔ ൈ  is the number of times each ࡯ is the degree of each node and ࡰ ሻ whereࡰ
node is selected for personal decision. 

 
g) Mega networks 

 
Also, as an additional experiment, to show applicability of our method in real-world networks, we 

apply our method on a random sample of Facebook database with 1,000,000 nodes. It must be mentioned 
that community detection needs to be validated using known and existing communities and in this sample 
database, we could not access such data to evaluate the NMI. However, this part of our experiment is 
interesting for us only for the scalability point of view. So, the accuracy is not the matter here. Our method 
can detect 22371 communities in only 35 seconds using an Intel cori7 processor and 16GB of memory. It 
is somehow promising to show that the method is completely scalable and can be applied on Mega 
networks easily. 

 
5. CONCLUSION AND FUTURE WORK 

 
In this study, we have proposed a Game theoretic framework based on Shapley value of the vertices and 
Information Diffusion Model to identify community structure of the underlying network graph. In this 
framework each node of the graph is considered as an agent that calculates Shapley value for each 
community it has a connection with. Specifically, each selected agent chooses between join, leave and 
switch operations iteratively. The Nash equilibrium of the game corresponds to the community structure of 
the network.  

The results demonstrate our method’s superiority over other well-known methods. For future work, 
the proposed framework can be easily extended to be used in dynamic social networks. In addition, 
different models for information diffusion in social networks can be used. 
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