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Abstract– Modal interaction noticeably affects the dynamic behavior of a stressed power system 
with heavy loading. In this paper, Modal Series (MS) as a method to analyze modal interactions is 
extended for a power system installed with a static synchronous series compensator (SSSC) 
stabilizer. The - based and m-based stabilizers as two stabilizers in different control channels are 
presented for a SSSC. The parameters of the stabilizers are calculated by a quadratic mathematical 
programming method. In this procedure, the gain and the phase of a stabilizer are calculated 
simultaneously. A particular measure of stabilizer gain is considered as an objective function.  The 
effects of SSSC based stabilizers on damping inter-area oscillations for a small disturbance are 
studied and compared. Modal interactions between an inter-area mode and control modes related 
to SSSC stabilizers are studied by a proposed index based on MS method in a 4-machine stressed 
power system. Oscillatory instability caused by modal interactions is investigated and compared in 
the system for both SSSC stabilizers.           

 
Keywords– Inter-area oscillations, static synchronous series compensator (SSSC), damping stabilizer, nonlinear 
modal interactions, stressed power systems  
 

1. INTRODUCTION 
 

In steady state, SSSC is one of the series flexible AC transmission systems (FACTS) that injects a 
balanced three phase voltage to a transmission line and quadrature with the line current [1]. Therefore, in 
this situation it can only exchange the reactive power with the network. Also, in dynamic state it can 
exchange active power with the network. SSSC when equipped with a suitable stabilizer can damp power 
oscillations [2]. There are two channels to control the magnitude and phase of the injected voltage. A 
stabilizer can be applied to both channels to damp mechanical oscillations. For convenience, the stabilizer 
in the phase control channel is called - based and in the magnitude control channel is called m-based 
stabilizer. In studying small disturbance stability, the - based stabilizer is more effective in damping 
inter-area oscillations compared to the m-based stabilizer [3]. When a stressed power system is faced with 
partly severe disturbance, nonlinear modal interactions are increased and the dynamic behavior of the 
system will be complex [4]. In these conditions, modal interactions may deteriorate damping of an inter-
area mode and consequently the system may be unstable [5-7]. In past decades, to analyze the modal 
interactions in stressed power systems, the normal form (NF) method was one of the proposed methods [8-
11]. Although the applications of this method are reported in many areas and regarded as a useful and 
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effective tool, there are a few drawbacks to this method. This method needs to do nonlinear 
transformations as well as solving nonlinear algebraic equations. Also, in this method resonance and 
quasi-resonance conditions must not be satisfied. Modal series is another method that has been proposed 
recently to analyze the nonlinear behavior of stressed power systems [12, 13]. The modal series method 
retains most of the advantages of the NF method, without having the mentioned drawbacks.  

Modal interactions in a power system installed with FACTS based stabilizers has not been 
satisfactorily addressed. Among FACTS devices, the Static VAR Compensator (SVC) and Unified Power 
Flow Controller (UPFC) have been studied in this field of research [14-18].  

In this paper, a lead-lag stabilizer is considered for a SSSC. The gain and phase of the stabilizer are 
simultaneously calculated by a quadratic mathematical programming method. The modal series method is 
extended to a power system with a SSSC stabilizer. The approximate responses of a 4-machine power 
system by linear and modal series methods are compared by a proposed index. Modal interactions between 
inter-area mode and control modes related to SSSC stabilizers are investigated by a proposed index. 
Effects of modal interactions on stability of the system with SSSC stabilizer in both control channels are 
investigated and compared. 
 

2. POWER SYSTEM MODEL 
 
a) Generator 
 
In this study, each generator is represented by a fourth-order d-q axis model. Therefore, nonlinear dynamic 
equations for ith generator with known variables are as follows [19]: 

  sii                                                                (1) 
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b) Exciter 
 

In this paper, the IEEE type-AC-4A excitation system is considered, the block diagram is shown in Fig. 
1. The role of used parameters for the system is discussed in [20].  
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Fig. 1. Excitation system 
 
c) SSSC modeling 
 

It is assumed that, in an n-machine power system, a SSSC is installed on the transmission line 
between nodes 1 and 2 as shown in Fig. 2.  
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Fig. 2. SSSC structure 

 
The SSSC consists of a series coupling transformer (SCT) with the leakage reactance XSCT,  a three-phase 
GTO based voltage source converter (VSC) and a DC capacitor. The SSSC can be described as [21]: 

 jmkVV dcinj )sin(cos                                                  (5)  

 IjIII LQDL                                                     (6) 

    II
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where Vinj is the injected ac voltage by the SSSC; m and  are the modulation ratio and phase defined by 
pulse width modulation (PWM), respectively; depending on the converter structure k is the ratio between 
the ac and dc voltage; Vdc is the dc voltage; Cdc is the capacitance of the dc capacitor, and ID and IQ are D-
and Q components of the line current IL, respectively. 
 

3. SSSC-BASED STABILIZERS 
 
a) Phase-based stabilizer  
 
Assuming a lossless SSSC, the ac voltage is kept in quadrature with the line current so that the SSSC only 
exchanges reactive power with the transmission line. By adjusting the magnitude of the injected voltage, 
the reactive power exchange can be controlled. When the SSSC voltage lags the line current by 90º, it 
emulates a series capacitor, when the voltage leads the line current by 90º it can also emulate a series 
inductor. Thus, a SSSC can be considered as a series reactive compensator, where the degree of 
compensation can be varied by controlling the magnitude of the injected voltage. In this paper, the SSSC 
is considered in capacitive mode. To keep the injected voltage in quadrature with the line current, a PI 
controller, as shown in Fig. 3, has been used. Here, ref is the phase of the injected voltage in steady-state 
and its value is considered as ref =-90º+ss , where ss is the angle of the line current in steady-state; Tsssc 
is the time constant of the converter, KP and KI are the proportional and integral gains of the PI controller, 
respectively. In the PI controller, a lead-lag stabilizer for damping the inter-area oscillations is included. In 
this case, the stabilizer is called the phase-based stabilizer and for convenience in this paper, it is called -
based stabilizer. In this stabilizer, TW is the washout time constant; T is the stabilizer time constant, and x2, 
x1 and x0 are parameters to be determined. The feedback signal for the stabilizer is selected among local 
signals as the line-current, the line-real power, and the line-reactive power. 
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Fig. 3. SSSC phase controller with a damping stabilizer 

 
b) Magnitude-based stabilizer  
 

In order to control the magnitude of the injected voltage, the modulation ratio m can  be controlled. 
Fig. 4 shows the block diagram of the controller in this case, where Xref is the value of produced series 
reactance by SSSC in capacitive mode, in steady state condition. A stabilizer for damping of inter-area 
oscillations is included in the magnitude controller. This stabilizer is called m-based stabilizer. 

refX
SSSCsT1

1 m× ×

LI dckV
1

0

1

+

Damping Stabilizer

W

W

sT
sT

sT
xsxsx




1)1( 2
01

2
2

+

Input 
signal

refX
SSSCsT1

1 m× ×

LI dckV
1

0

1

+

Damping Stabilizer

W

W

sT
sT

sT
xsxsx




1)1( 2
01

2
2

+

Input 
signal

 
Fig. 4. SSSC magnitude controller with a damping stabilizer 

 
4. QUADRATIC MATHEMATICAL PROGRAMMING TO  

DESIGN THE STABILIZER 
 
The design method used in this paper is an incremental method including two steps. In the first step, the 
closed-loop system is considered as in Fig. 5, where G(s) and )(sF  are the power system transfer matrix 
and the stabilizer transfer matrix, respectively. In the second step, the stabilizer transfer matrix is changed 
by F. In this case, the closed-loop system changes as shown in Fig. 6, where )(sG  is the transfer matrix 
of the inner loop between G(s) and )(sF .  
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Fig. 5. Closed loop system in the first step 
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Fig. 6. Closed loop system in the second step 

 
The details of the method for calculation F are presented in [3]. This method is summarized as 

follows. Assuming variations of F are sufficiently small, the variation of the eigenvalue i can be 
approximated as: 

   f iii )(  (i=1, 2, ..., n)                                                    (8)  

where n is the number of critical eigenvalues and i is the residue associated to the ith eigenvalue i of 
)(sG .                                                      

It is assumed that the stabilizer has a lead-lag structure as follows: 
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By substituting is   and mm xx  (m=1, 2, 3) in (9), the real and imaginary part variations of f (i) 
can be obtained as a linear function of x0, x1 and x2. Then, by substituting the real and imaginary parts 
of f (i) in (8), the real and imaginary parts of i can be written as a linear function of x0,  x1 and x2.  

Considering i and i as the desired values of the real and imaginary parts of the critical eigenvalue i, 
respectively, the following constraints can be obtained to shift the critical eigenvalues to the desired areas 
in the complex plane [3]. 

iiii xxx   001122                                              (10) 

iiiii xxx   001122                                         (11) 

where 0i, 1i, 2i, 0i, 1i, and 2i are specified values. On the other hand, if the angle of residue i is 
positive, the stabilizer must have a phase-lead characteristic; otherwise, it must have a phase-lag 
characteristic. For a phase–lead structure, it is assumed that zeros of the stabilizer are almost one decade 
closer to the imaginary axis than that of its poles and for the phase-lag structure the zeros are almost one 
decade farther to the imaginary axis. Considering mmm xxx  (m=1, 2, 3), the constraints on zeros can 
be written for a lead-phase stabilizer as in (12) to (14) and for a phase-lag stabilizer as in (15) to (17) [3].  
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where 0x , 1x and 2x  are known values. 
The following function, as the gain of the stabilizer at the frequency i , i=1, 2, . . . m, is considered as the 
objective function [3]. 

  
2

1

min



m

i
ijfJ                                                             (18) 

where 1 , 2 ..., m  are a set of frequencies in the region where the critical eigenvalue must be shifted. 

By substituting (9) in (18) and considering ijs  , we can easily rewrite the objective function as  

XfXHX
2
1 J TT   min                                                   (19) 

where the matrix H and vector f are known and Tx   x  xX ][ 012   is the unknown vector to be 
tuned. The objective function (19) along with constraints (10)-(11) and (12)-(14) or (15)-(17) forms a 
quadratic mathematical programming problem. To solve this problem, the function of quadprog embedded 
in Matab Optimization Toolbox is applied here. 
  

5. ZERO INPUT RESPONSE USING LINEAR AND MODAL SERIES METHODS 
 
The dynamic behavior of a power system can be represented by a set of nonlinear equations as follows: 

)(XFX                                                                    (20) 

where NRX   is the state vector and NN RRF :  is a smooth vector field. 
Let XSEP be a stable equilibrium point (SEP) of the system. By expanding the Taylor series around XSEP, 
the equation (20) can be written as: 
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where Ai is ith row in Jacobeans matrix
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hessian matrix.  
Let the right and left eigenvectors of matrix A be considered as U and V, respectively. Assuming the 
eigenvalues of matrix A are distinct, using the transformation X=UY, equation (21) can be written in the 
Jordan form as: 
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a) Linear modal method 
 

In the linear modal method, only the first term in (21) is considered and higher order terms are 
omitted. In this case, the linear solution for jth Jordan variable will be as: 
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where yj0 is jth element in vector of 0
1

0 XUY  and X0 is the initial condition vector in physical state –
space. 
Using transformation XUY 1 , the approximate solution for ith state variable in the original space would 
be as: 
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where uij is the i, j element of the right eigenvector matrix U. 
 
b) Modal series method 
 

In this method, beside linear terms, second order terms are also considered, but third and higher order 
terms are ignored. 
In this case, second order closed form approximate solution of (22) for jth state variable in the Jordan form 
will be as[12, 13]: 

2

2

2

∈),,(1 1

),,(1 1

)(

),,(1 1
0

∑∑

∑∑

∑∑

2

2-)(

Rjlk

t
loko

N

k

N

l

j
kl

Rjlk

N

k

N

l

t
loko

j
kl

t

Rjlk

N

k

N

l
loko

j
kljj

j

lk

j

teyyC

eyyh

eyyhyty

 

 



 










































































                            (25) 
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kl Ch    and 2R  is all three triples(k,l,j) which satisfy the second order resonance 

conditions .jlk    The second order approximate solution in the physical space can be represented 
as: 
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Comparing the coefficients of individual and combination modes in (25) for jth Jordan variable leads to the 
definition of the nonlinear interaction index as follows [22]. 
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where 00,
2max lk

j
kllk

yyh  is the complex form when 00,
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6. SIMULATION RESULTS 
 
The test system here is a 2-area 4-machine power system. A single line diagram of the system is shown in 
Fig. 7 [23]. To control inter-area oscillations, a SSSC is installed in the tie-line between nodes 5 and 6. 
Data of this system and specific parameters used for the SSSC are given in the Appendix. The loads are 
modeled as constant impedances. No PSS is installed in the system. To increase transferred power, the 
load in area 2 has been increased and the load in area 1 has then been modified to achieve a given tie-line 
transferred power. 
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Fig. 7. One line-diagram of the test system 

 
Table 1. Studied operating conditions 

 
Loading 

conditions 
Load of Area 

1(MW) 
Load of Area 

2(MW) 
Transmitted 
power(MW) 

Low stress 1000 1300 310 
High stress 890 1410 410 

 
Summary of studied operating conditions are shown in Table 1. The oscillation modes in the open loop 
system for low and high stress loading conditions are shown in Table 2. This table shows that damping of 
inter-area mode is low, particularly in high stress conditions. To increase damping of this mode to a 
desirable value, the parameters of SSSC -based and m-based stabilizers are calculated by a quadratic 
mathematical programming method. The variation of line current magnitude is considered as the best 
input signal for both SSSC stabilizers [3]. As the desired damping ratio for inter-area mode, typically two 
values of =7%  for high stress loading conditions and =10% for low stress loading conditions have been 
considered. The time constant of the stabilizers is considered to be T=0.4 s. Parameters of stabilizers to 
achieve desired damping ratios of inter-area mode are shown in Table 3. Loop gains of the stabilizers 
(f(j)) in a frequency close to frequency of inter-area mode are shown in the last column of the table.  
Typically, this frequency is considered as =1.7 rad/s. This value is average of inter-area mode frequency 
for different SSSC stabilizer and different operation conditions. Table 3 shows that for the same desired 
damping ratio, the loop gains of the SSSC -based stabilizer is less than the SSSC m-based stabilizer. That 
is, to achieve the same desired damping ratio for inter-area mode, control cost in the SSSC -based 
stabilizer is lower compared with the SSSC m-based stabilizer. In other words, the SSSC -based 
stabilizer is more effective for damping inter-area oscillations. Oscillation modes in closed loop systems 
for SSSC  and m-based stabilizer are shown in Tables 4 to 6. These tables show that damping ratio of 
inter-area mode has been improved to the desired value. In addition, it can be seen that the other modes 
have not been degraded significantly. Also, these tables show that the SSSC stabilizers create new control 
oscillation modes.  
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Table 2. Oscillation modes in open loop system  
 

Mode # 
P=310 MW P=410 MW 

Dominant states 
Eigenvalue Damping (%) Eigenvalue Damping (%) 

1,2 -1.225±j7.728 15.66 -1.244±j7.748 15.85 Local, Area 1(1, 2) 
3,4 -1.577±j7.451 20.71 -1.554±j7.549 20.16 Local, Area 1(3, 4) 
5,6 -0.088±j1.787 4.92 -0.028±j1.647 1.70 Inter-area(1, 2, 3, 4) 
7,8 -1.151±j0.846 79.97 -1.320±j0.832 84.60 221221, EEq X ,X ,E   

9,10 -0.557±j 0.832 55.63 -0.585±j 0.826 57.79 E2414Eq4q X ,X ,E E  ,
3

 
11,12 -0.253±j0.383 55.12 -0.257±j0.393 54.84 Control (Exciter 1) 
13, 14 -0.269±j0.358 60.07 -0.284±j0.361 61.79 Control( Exciter 3 and 4) 

 
Table 3. Parameters of SSSC damping stabilizers   

 
 P(MW) (%) SSSC stabilize x2 x1 x0 )( jf  

410 
7 m-based 0.08602 0.04301 0.00538 0.1737 

-based 0.00178 0.01169 0.04915 0.0330 

10 m-based 0.14440 0.07220 0.00902 0.2915 
-based 0.00275 0.03395 0.06764 0.0568 

310 10 m-based 0.45702 1.22090 0.47085 1.5337 
-based 0.00137 0.00901 0.03837 0.0258 

 
Table 4. Oscillation modes in closed loop system for =10% and P=310 MW 

 

Mode # 
SSSC -based stabilizer SSSC m-based stabilizer 

Dominant 
states 

Eigenvalue Damping 
(%) Eigenvalue Damping 

(%) 
1, 2 -1.225±j7.729 15.65 -1.255±j7.660 16.17 Local, Area 1(1, 2) 
3, 4 -1.577±j7.451 20.71 -1.555±j7.398 20.57 Local, Area 1(3, 4) 
5, 6 -0.180±j1.789 10.01 -0.181±j1.777 10.13 Inter-area(1, 2, 3, 4) 
7, 8 -1.180±j0.891 79.80 -1.199±j1.147 72.26 221221, EEq X ,X ,E   

9, 10 -0.553±j0.857 54.22 -0.548±j0.817 55.70 E2414Eq4q X ,X ,E E  ,
3

 
11, 12 -0.253±j0.383 55.18 -0.251±j0.383 54.81 Control (Exciter 1) 
13, 14 -0.268±j0.358 59.93 -0.269±j0.358 57.27 Control( Exciter 3 and 4) 
15, 16 -0.946±j0.879 73.26 -0.721±j0.611 76.29 Control(SSSC stabilizer) 

 
Table 5.  Oscillation modes in closed loop system for =7% and P=410 MW 

 

Mode 
# 

SSSC -based stabilizer SSSC m-based stabilizer Dominant 
states Eigenvalue Damping 

(%) Eigenvalue Damping 
(%) 

1,2 -1.244±j7.749 15.85 -1.250±j7.751 15.91 Local, Area 1(1, 2) 
3,4 -1.554±j7.549 20.16 -1.557±j7.548 20.20 Local, Area 1(3, 4) 
5,6 -0.123±j1.748 7.02 -0.119±j1.692 7.02 Inter-area(1, 2, 3, 4) 
7, 8 -1.402±j0.927 83.42 -1.277±j0.739 86.64 221221, EEq X ,X ,E   

9, 10 -0.582±j0.854 56.29 -0.584±j0.826 57.73 E2414Eq4q X ,X ,E E  ,
3

 
11, 12 -0.257±j0.393 54.75 -0.257±j0.393 54.82 Control (Exciter 1) 
13, 14 -0.283±j0.361 61.68 -0.284±j0.361 61.80 Control( Exciter 3 and 4) 
15, 16 -0.552±j0.506 71.80 -0.623±j0.318 89.07 Control(SSSC stabilizer) 
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For verification of the designed stabilizers a three-phase fault is applied to the test system at bus 6. 
The clearing time of fault, tcr, is set as tcl=20 ms. The fault is cleared without line switching. Because the 
generators 1 and 3 have the most contribution in the inter-area mode, typically, swing angle of generator 1 
with respect to generator 3 for different SSSC-based stabilizers at high stress operation conditions is 
shown in Fig. 8. This figure shows that SSSC stabilizers can effectively damp inter-area oscillations. 
 

Table 6. Oscillation modes in closed loop system for =10% and P=410 MW 
 

Mode # 
SSSC -based stabilizer SSSC m-based stabilizer 

Dominant 
states 

Eigenvalue Damping (%) Eigenvalue Damping (%) 

1, 2 -1.244±j7.749 15.85 -1.254±j7.751 15.97 Local, Area 1(1, 2) 
3, 4 -1.554±j7.549 20.16 -1.559±j7.546 20.24 Local, Area 1(3, 4) 
5, 6 -0.172±j1.675 10.21 -0.168±j1.644 10.19 Inter-area(1, 2, 3, 4) 
7, 8 -1.453±j0.841 86.54 -1.238±j0.704 86.93 221221, EEq X ,X ,E   

9, 10 -0.593±j0.862 56.70 -0.584±j0.827 57.68 E2414Eq4q X ,X ,E E  ,
3

 
11, 12 -0.257±j0.393 54.75 -0.257±j0.393 54.82 Control (Exciter 1) 
13, 14 -0.283±j0.361 61.68 -0.284±j0.361 61.80 Control( Exciter 3 and 4) 
15, 16 -0.568±j0.694 63.34 -0.478±j0.523 67.46 Control(SSSC stabilizer) 
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Fig. 8. Response of system without and with SSSC stabilizer for =10%, P=410 MW and tcl=20 ms 

 
The response of the closed loop system for tcl=15 ms and 40 ms for SSSC -based and m-based 

stabilizers are shown in Figs. 9 to 12. In these figures, nonlinear simulation as a full solution and 
approximate solutions are shown. These figures show that when fault duration is small, the full nonlinear 
solution and approximate solutions are very close to each other. But, when fault duration is increased, the 
difference between full solution and approximate solutions is noticeable. In this case, nonlinear modal 
interactions are increased. Also, it can be seen that approximate solution by modal series method is always 
close to full solution in comparison with linear modal solution. Therefore, in a stressed power system 
faced with a severe fault, linear modal analysis cannot evaluate dynamic behavior of the system well. 
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Fig. 9. Response of system with -based stabilizer for =10%, P=410 MW and tcr=15 ms 
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Fig. 10. Response of system with -based stabilizer for =10%, P=410 MW and tcr=40 ms 
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Fig. 11. Response of system with m-based stabilizer for =10%, P=410 MW and tcr=15 ms 
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Fig. 12. Response of system with m-based stabilizer for =10%, P=410 Mw and tcr=40 ms 

 
To evaluate the precision of the approximate solutions, an error index is used as follows [24]. 

dttxtx
T

iEr
T

ii 
0

)(~)(1)(                                                      (28) 

where, T is the simulation time, xi(t) and )(~ txi are full and approximate response for ith state variable, 
respectively.  

According to (28), the error index for different values of fault duration for closed loop system in high 
stress loading conditions for different SSSC stabilizers is shown in Fig. 13. This figure shows that when 
fault duration is increased the error index for the system with m-based stabilizer is lower in comparison 
with -based stabilizer. In other words, the nonlinear effects are higher in the system with -based 
stabilizer. Also, this figure shows that for different values of fault duration, the error index for 
approximate response obtained by the modal series is lower than the approximate response obtained by the 
linear method. 
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Fig. 13. The value of error index for different values of fault durations in the  

closed loop system for =10% and P=410 MW 
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According to (27), in some cases, the values of nonlinear modal interaction index for inter-area mode 
at fault duration of 35 ms are calculated and shown in Tables 7 to 10. According to these tables, the 
following results can be concluded: 

I. According to Table 7, modal interactions between inter-area mode and control modes related 
to exciters are not severe in the open loop system. 

II. Tables 8 to 10 show that, in the closed loop system, modal interactions between inter-area 
mode and control modes related to SSSC stabilizers are higher than that of exciter control 
modes.  

III. Comparing Tables 8 and 10 shows that by increasing stress on the system, modal interactions 
between inter-area mode and SSSC stabilizer control modes are increased. 

IV. It can be seen from Tables 8 to 10 that modal interactions between inter-area mode and 
control mode related to SSSC -based stabilizer are higher than the m-based stabilizer. 

V. From Tables 8 and 10, it can be concluded that by increasing desired damping ratio, for inter-
area mode in a certain value of transferred power, the modal interactions between inter-area 
mode and SSSC stabilizer control modes are increased.   

 
Table 7. Nonlinear modal interaction index for inter-area mode in the open 

loop system for P=410 MW 
 

Mode j   Mode k Mode l II(j) 

5 

5 11 0.62 
7 11 0.42 
9 13 0.37 
5 5 0.11 

 
Table 8. Nonlinear modal interaction index for inter-area mode in the  

closed loop system for =10% and P=310 MW  
 

SSSC stabilizer Mode j Mode k Mode l II(j) 

-based 5 

15 15 1.89 
5 15 0.93 
7 11 0.28 
9 13 0.19 

m-based 5 

15 15 0.95 
5 15 0.56 
9 11 0.21 
7 13 0.20 

 
Table 9. Nonlinear modal interaction index for inter-area mode in the closed 

 loop system for =7% and P=410 MW  
   

SSSC stabilizer Mode j Mode k Mode l II(j) 

-based 5 

15 15 3.18 
5 15 1.72 
7 11 0.72 
9 13 0.59 

m-based 5 

15 15 1.84 
5 15 0.87 
9 11 0.61 
7 13 0.53 
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Table 10. Nonlinear modal interaction index for inter-area mode in the 
 closed loop system for =10% and P=410 MW  

   
SSSC stabilizer Mode j Mode k Mode l II(j) 

-based 5 

15 15 4.11 
5 15 2.17 
7 11 0.69 
9 13 0.56 

m-based 5 

15 15 2.32 
5 15 1.18 
9 11 0.59 
7 13 0.57 

 
For more stress on the system, loads L1 and L2 are set in the values 1430 and 870 MW, respectively. 

In this case, transferred power between two areas is about P=430 MW. The mechanical and control 
oscillation modes in the open loop system are shown in Table 11. This table shows that inter-area mode is 
unstable for this condition. Mechanical and control modes in the closed loop system, with parameters of 
Table 3 related to P=410 MW and =10%, are presented in Table 12. This table shows that damping ratio 
of inter-area mode in the closed loop system has been reduced by increasing transmitted power. Also, it 
can be seen from this table that the damping of inter-area mode with the -based stabilizer is somewhat 
higher than the m-base stabilizer. Swing angle of generator 1 with respect to generator 3 for the -based 
and m-based stabilizer at different values of fault duration are shown in Figs. 14 and 15, respectively. 
Figure 14 shows that when fault clearing time is 10 ms (small disturbance) the system is stable. This 
condition is coincident with eigenvalue results. By increasing fault duration to tcr=25.3 ms, damping of 
oscillations would be approximately zero and the oscillations are repeated periodically without decaying 
or diverging. Lastly, in fault duration of 26.5 ms, the system is faced with oscillatory instability and loses 
its synchronism after about 20 seconds.  

 
Table 11. Oscillation modes in the open loop system for P=430 MW 

 
Mode # Eigenvalue Damping (%) Dominant states 

1,2 -1.247±j7.760 15.87 Local, Area 1(1, 2) 
3,4 -1.539±j7.585 19.88 Local, Area 1(3, 4) 
5,6 0.024±j1.476 -1.63 Inter-area(1, 2, 3, 4) 
7, 8 -1.431±j0.718 89.38 2212231 ,, EEq X ,X ,E    

9, 10 -0.584±j0.822 57.92 E2414Eq4q X ,X ,E E  ,
3

 
11, 12 -0.257±j0.397 54.34 Control (Exciter 1) 
13,14 -0.288±j0.361 62.36 Control( Exciter 3 and 4) 

 
Table 12. Oscillation modes in the closed loop system (with parameters  

          of Table 3 related to P=410 MW and =10%) for P=430 MW 
 

Mode # SSSC -based stabilizer SSSC m-based stabilizer Dominant states 
 Eigenvalue Damping (%) Eigenvalue Damping (%)  

1,2 -1.246±j7.760 15.85 -1.256±j7.763 15.97 Local, Area 1(1, 2) 
3,4 -1.539±j7.585 19.88 -1.543±j7.583 19.94 Local, Area 1(3, 4) 
5,6 -0.052±j1.432 3.63 -0.043±j1.419 3.03 Inter-area(1, 2, 3, 4) 
7, 8 -1.662±j0.684 92.47 -1.224±j0.616 89.33 2212231 ,, EEq X ,X ,E    

9, 10 -0.595±j0.859 56.94 -0.580±j0.823 57.61 E2414Eq4q X ,X ,E E  ,
3

 
11, 12 -0.256±j0.398 54.10 -0.257±j0.397 54.34 Control (Exciter 1) 
13, 14 -0.288±j0.362 62.26 -0.288±j0.361 62.36 Control( Exciter 3 and 4) 
15, 16 -0.534±j0.756 57.69 -0.452±j0.501 66.99 Control(SSSC stabilizer) 
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Fig. 14. Response of the system for SSSC -based stabilizer (with parameters of Table 3 related 

   to P=410 MW and =10%) for P=430 MW at different values of fault duration  
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Fig. 15. Response of the system for SSSC m-based stabilizer (with parameters of Table 3 related 

 to P=410 MW and =10%) for P=430 MW at different values of fault duration  
 
The fault clearing time for first swing instability for both SSSC stabilizers is shown in Fig. 16. Comparing 
Figs.14 and 16, it can be seen that fault clearing time for oscillatory instability is about 8 ms less than the 
clearing time for the first swing instability. Figure 15 shows that the system with SSSC m-based stabilizer 
at tcl=26.5 ms is stable (unlike -base stabilizer). Also, comparing this figure to Fig. 16 shows that fault 
clearing time for instability of the system is close to that of for first swing instability. 
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Fig. 16. Response of the system with SSSC based stabilizers (with parameters of Table 3  

         related to P=410 MW and =10%) for P=430 MW for first swing instability 
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For P=410 MW, modal interaction index between inter-area mode and SSSC stabilizer control modes for 
fault duration of 25 ms is shown in Table 13. This table confirms that modal interactions for SSSC -
based stabilizer are severe in comparison with m-based stabilizer. 

It can be seen from the above results that modal interactions can deteriorate damping of a mechanical 
mode that causes the system to become unstable. However, the system is recognized as stable due to a 
small disturbance. 
 

Table 13. Nonlinear modal interaction index for inter-area mode in the closed loop system (with  
parameters of Table 3 related to P=410 MW and =10%) for P=430 MW  

 
SSSC 

stabilizer Mode j Mode k Mode l II(j) 

-based 5 

15 15 5.68 
5 15 3.17 
7 11 0.98 
9 13 0.86 

m-based 5 

15 15 3.38 
5 15 2.10 
9 11 1.06 
7 13 0.92 

 
7. CONCLUSION 

 
In this paper, modal series method is extended to a multi-machine power system installed with a SSSC-
based stabilizer. Phase and magnitude control channels are considered for the SSSC stabilizer. Parameters 
of the SSSC stabilizer are calculated by a quadratic mathematical programming method. Results show that 
for small disturbance analysis (eigenvalue analysis), the gain (the control cost) of the stabilizer to improve 
damping of an inter-area oscillation mode to a desired value with SSSC -based stabilizer is less than the 
m-based stabilizer. By increasing the fault duration (magnitude of disturbance) in certain operating 
conditions, modal interactions between inter-area mode and control mode related to SSSC -based 
stabilizer are higher than the m-based stabilizer. Also, results show that in a certain heavy loading 
condition, the system with -based stabilizer is faced with an oscillatory instability whose clearing time is 
less noticeable than that for the first swing instability. Therefore, to select the optimal control channel for 
a SSSC stabilizer, in stressed power systems in which modal interactions between an inter-area mode and 
control modes are  high, eigenvalue analysis (small disturbance analysis) alone may not be sufficient and 
effects of modal interactions must be considered. In other words, a trade-off between linear and nonlinear 
analysis must be done.  
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APPENDIX A: Data used for simulations 
 
Data of SSSC (in p.u. except indicated): TSSSC=0.01 s, k=1, XSCT=0.15, CDC=1, Vdcref=1, Xref=0.12, KP=25, KI=200. 
Data of generator and network: 

1. Synchronous generator data: Table A1. 
2. Transmission line data: Vbase=230kv, Sbase=100MVA, Xline=0.001p.u/km, Rline=0.0001p.u/km. 
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3. Exciter parameters: Table A2. 
4. Load flow data (in p.u.) on base 100 MVA): QC1=2.551, QC2=2.543, Ql1=2.50,Ql2=2.50, Pg1=6.644, 

Pg2=6.644, Pg4=5, V3=1.020 (swing bus), |V1|=1.02, |V2|=1.02, |V4|=1.02. 
 

Table A1. Generator data (in p.u. except indicated) 
 

Parameter G1 G2 G3 G4 
Ra 0.0025 0.0025 0.0025 0.0025 
xd 1.8 1.8 1.8 1.8 
xq 1.7 1.7 1.7 1.7 

dx  0.3 0.3 0.3 0.3 

qx  0.3 0.3 0.3 0.3 

doT  (s)  8 8 8 8 

qoT  (s) 0.4 0.4 0.4 0.4 
H (s) 6.5 6.5 6.5 6.5 

D 9 1 11 1.2 
Sbase (MVA) 900 900 900 900 

 
Table A2. Exciter data (in p.u.) 

 
Generator KA TA TC TB TR 

1 100 0.01 1 10 0.01 
2 100 0.01 1 10 0.01 
3 100 0.01 1 10 0.01 
4 100 0.01 1 10 0.01 

 
 


