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Abstract– Most previous studies in estimation of the target position and velocity through Bearing 
Only Measurements (BOM) consider targets with constant velocity moving along a straight line. 
In this paper, state and measurement equations are presented for moving targets with constant 
acceleration by using the previously presented state vector in the Extended Modified Polar 
Coordinates (EMPC) system. In the BOM systems, by increasing the distance between target and 
observer (Own ship) the estimation accuracy of the target kinematic parameters degrades 
noticeably. In order to solve this problem, here the idea of hybrid data measurements is presented. 
In this approach both low rate range information, from active sensor, and high rate BOM are 
exploited. The improvement in the performance of the hybrid system compared to BOM system is 
represented through computer simulations.           
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1. INTRODUCTION 
 

Nowadays passive systems applications, due to limitations of active systems, especially in surveillance 
applications have increased. In recent decades, the estimation problem of target kinematic parameters 
(position, velocity and acceleration) through bearing-only measurements (BOM), which is known as 
Target Motion Analysis (TMA) has been noticed [1-6]. In the bearing-only TMA, the target propagates 
either an electro-magnetic or an acoustic wave. Then the Directions of Arrival (DOA) of waves are 
measured by passive sensor(s) and these measurements are processed by tracking filters. Two types of 
tracking filters exist:  і) processing a batch of data ii) processing the data recursively. In this study, the 
recursive filters are chosen. Extended Kalman Filter (EKF) has received considerable attention in recent 
years [7-9]. But previous studies have shown that the EKF in Cartesian coordinates exhibits unstable 
behavior characteristics when utilized for bearing-only TMA [10]. To solve this problem, target kinematic 
model is written in the so-called Modified Polar Coordinates (MPC) which leads to an EKF which is both 
stable and asymptotically unbiased [1].This model has been used in many researches on BOM-TMA [5], 
[11]. The MPC were originally conceived by K. R. Brown and significantly developed by H. D. Hoelzer 
and co-workers at IBM in the late 1970's [12]. Afterwards, in [1] state and measurement equations in MPC 
were derived for a constant velocity target moving along a straight line. Then State vector in MPC was 
extended to include target acceleration components in order to provide practical guidance for homing 
missiles with bearing only measurements [13]. We used this state vector in the Extended Modified Polar 
Coordinates (EMPC) system to derive exact state and measurement equations for maneuvering targets. In 
the BOM systems, by increasing the distance between the target and the observer (own ship) the 
estimation accuracy of the target kinematic parameters degrades noticeably. In order to solve this problem, 
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the idea of hybrid data measurements is presented. In this idea both low rate range information, from 
active sensor, and high rate BOM are used. In section 2 the requirements on the observer and target paths 
is described. In section 3 state and measurement equations for a moving target with a constant acceleration 
are presented. In section 4 the idea of hybrid data measurements is explained. The performance of the 
BOM system and the hybrid system is compared in section 5 by computer simulations. Finally conclusions 
are presented in section 6. 
 

2. PROBLEM FORMULATION AND ANALYSIS 
 
In the problem of our interest, a target is moving with a constant acceleration in the x-y plane and the own 
ship, which is a single observer, is moving on the same x-y plane with a constant velocity on a circular 
path (see Fig.1). A basic principle of the position estimation through the BOM in the above scenario is that 
the observer motion dynamics must be one derivative higher than that of the target [2], [14], [15]. For 
example, a constant nonzero velocity observer (own ship) can estimate the position of a stationary target 
and an accelerating observer can estimate the position and velocity of a constant velocity target.  
 


Target path

Target

Own shipOwn ship path

LOS

Own ship and Target paths  
Fig.1. Own ship and target paths 

 
A sensor on the own ship board collects N angular measurements T seconds apart. The Bearing angle, β, 
of the line connecting the sensor phase center to target is measured with respect to the y-axis: 

     
                   N1,2,3,...,k           kTn  

Y - Y
X - Xatan   

OT

OT 
kTkT
kTkTkTz                              (1) 

where  kTz  is the noisy angular measurement, (    kTkT TT Y , X ) are the unknown target coordinates at the 
kth time instant while (    kTkT OO Y , X ) are the known own ship coordinates.  kTn  is the angular 
measurement noise and it is assumed to be a white Gaussian noise with zero mean and variance, angle

2 . To 
use both range information (active data) and angle information (passive data), an active sensor is 
considered on the own ship board which collects N  relative range of own ship-target measurements T   
seconds apart where T  T  and N  N .   

             

N1,2,3,...,  

           Y - Y    X - X   2
OT

2
OT





m

TmTmTmTmTmTmr 
                            (2) 

where  Tmr   is the noisy relative range of the own ship-target measurement and  Tm   is the range 
measurement noise which is assumed to be a white Gaussian noise with zero mean and variance, range

2 . 
Bearing angle measurements (in BOM systems) and range measurements (in hybrid- systems) are used in 
EKF to estimate the target kinematic parameters. 
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3. EKF IN BOM-TMA PROBLEM 
 
Previous studies for BOM-TMA have shown that the EKF in Cartesian coordinates exhibits unstable 
behavior [10]. To solve this problem the target kinematic model is written in the MPC which leads to an 
EKF which is both stable and asymptotically unbiased [1]. In [1] it is shown that the use of MPC 
decouples the observable (the bearing angle) and unobservable (the target range) components of the state 
vector, and this decoupling prevents the ill conditioning of the covariance matrix of the estimation error 
which causes the filter instability. The Modified Polar (MP) state vector has been extended to EMPC 
system for moving target with a constant acceleration [13].  
The state vector for EMPC system is: 

            Ttytytytytyty  
654321  , , , , ,y               Tr tttr

 
TT a  ,a ,1 ,t ,trtr ,t                           (3) 

where  t   is the derivative of the measured angle  t , rr  is the relative range rate divided by relative 
range,  t  is the measured angle with respect to y-axis, r1  is the inverse of relative range to own 
ship,  tTa  is the target acceleration component perpendicular to the current Line Of Sight (LOS) and 

 trTa  is the target acceleration component along the LOS. Based on the analysis reported in Appendix A, 
it has been shown that if the state vector for the EMPC system of a moving target with a constant 
acceleration is known at a given time 0t , the path of the target for 0  tt  can be computed analytically as:  

                                                           t, t , t   00yfy t             (4) 

where f is a 6-dimentional vector function whose components are non-linear functions of the state vector 
at the initial time 0t  and the current time t .  Equation (4) can be considered as the state equation in 
BOM-TMA problem.  The measurement equation in BOM-TMA problem is given by:  

                                                                                 tn    ˆ  Hyt  (5) 

Where 

                                  0 0 0 1 0 0  H  

 

 t̂  is the noisy measurement bearing angle and  tn  is the zero-mean Gaussian white noise with 
variance angle

2 . It can be seen that in the EMPC system the state equation is non-linear and the 
measurement equation is linear. The discrete time version of Eq. (4) is generated by putting kTt   and 

 Tkt 10  , where T  is the time period of the angle measurement and ,...3,2,1k  . The tracking filter 
in the EMPC system is obtained by applying the EKF to Eqs. (4) and (5) in discrete time form. The 
filtering equations are given by:  
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where  kky ,  1-kky ,  kkP ,  1kkP  are, respectively, the filtered state at time index k  given 
all the measurements up to the time index k , the predicted state at time index k  given all the 
measurements up to the time index  1k , the covariance matrix of estimation error (    kkk yy  ) and 
the covariance matrix of estimation error (    1-kkk yy  ) . The values  00y  and  00P  are the 
initializations of the state estimate and the covariance matrix, respectively. In target kinematic parameters 
estimation, the estimation has a bias at long range. To avoid the bias a plant noise is considered in Eq. (4). 
 kQ  is the covariance matrix of plant noise at the kth time index.  kG  is the Kalman gain at the kth  time 

index, I  is the six-dimensional unit matrix. The above approach has been used in [1] and [11] for constant 
velocity target.  
 

4. EKF IN HYBRID-TMA PROBLEM 
 
Our simulations in bearing-only TMA show when the distance between target and own ship increases, 
because of lack of range information, the estimation accuracy of target kinematic parameters noticeably 
degrades. In order to solve  the problem of the BOM system the practical idea that, as the measurement 
rate of active radar is low, the probability detection of radar decreases significantly is used. So using both 
low rate range information (from active radar) and high rate BOM (from passive radar) are proposed. This 
combination of active and passive data measurements is called hybrid data measurement. In this case 
when the active data (range measurement) is used, the state and measurement equations are changed as 
follow. State equation is similar to Eq. (4) but, in order to obtain the discrete time version of state equation 
it should be placing Tkt   and  Tkt  10  where T   is the time period of the range measurement by 
active radar and ,...3,2,1k  . Measurement equation is changed to: 
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where Tkt  . 
 t̂  and 

 tr̂
1  are noisy bearing angle measurement and inverse of relative range measurement, 

respectively.  
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  is the measurement noise vector. In this case  tr̂1  is used instead of  tr̂  and its noise 

is shown by  t  . The range measurement noise is  t  and its variance is range
2 . The variance of  t   is 
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where C is the covariance matrix of      Ttvtv   as:  
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It can be seen that in this case, that compared to Eq. (6), the vector H is changed to a  62   matrix and 

the measurement scalar  k̂  is changed to the measurement vector  
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5. SIMULATION RESULTS 

 
In this section three typical TMA scenarios are considered. In all scenarios a target is moving with a 
constant acceleration and own ship is moving on a circular path with a constant velocity. In the first 
scenario (section A) only the high rate bearing angle information for tracking the target (BOM tracking) is 
used, but in the second scenario (section B) in addition to using high rate bearing angle information, low 
rate range information (hybrid tracking) is also employed. In the third scenario (section C) a system that 
only uses the low rate range and bearing angle measurements for tracking the target is proposed. The 
sequence of angular measurements (for BOM tracking) and sequence of angular-range measurements (for 
hybrid tracking) are processed with EMPC-EKF and then the estimated target path in Cartesian 
coordinates is presented. At the end, the mean and Standard Deviation (STD) values of the tracking filter 
error by averaging the error along several independent trials of the same experiment are evaluated. In all 
scenarios the own ship is moving on a circular path whose center in Cartesian coordinates is  T00 . The 
constant velocity of own ship is sm 50  and the overall angle of rotation is 4  radian (own ship moves on 
the circular path two times). The passive sensor collects 501 N  angular measurements. The time period 
between consecutive measurements is s 3  T . In the hybrid tracking scenario as the passive sensor 
collects 15  m angular measurements, the active sensor reports one range measurement so the period of 
active sensor measurement is s 45  T (in this case the total range measurements is 

15
150


m
NN  ). The 

standard deviation of the angular measurement error is 1  angle and the standard deviation of the 
range measurement error is m  50 range  . The target is initially located at the position of 
 T m 15000m 20000  its initial velocity vector is  Ts  sm 10m 40 and its constant acceleration vector is 
 Ts  sm 2.0m 1.0 22  . In all scenarios the EMPC-EKF has been initialized on the basis of the first two 

angular and range measurements        2r , 2z , 1r , 1z . 
thus: 
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where maxTa  and maxTra are the maximum expected of Ta  and Tra , respectively. 
 
Section A: 
In this section the estimated and actual paths of the own ship and target, mean and STD of the relative 
range error and mean and STD of the bearing angle error are presented in Figs. 2 to 6, respectively. 
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            Fig. 2.  Actual and estimated paths of the own ship and target of the BOM Tracking 

 

 
Fig. 3.  Mean of the relative range error 

 

 
Fig. 4.  STD of the relative range error 
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Fig. 5.  Mean of the Bearing angle error 

 

 
Fig. 6.  STD of the Bearing angle error 

 
Figures 3- 4 show that when the number of measurements increase or in other words the distance between 
the own ship and target increases then the mean and STD of relative range errors increase. 
 
Section B: 
In this section similar to section A the estimated and actual path of target, mean and STD of the relative 
range error and mean and STD of the bearing angle error for the second scenario are respectively 
presented in Figs. 7 to 11. 

In Fig. 7 it can be seen that the estimated target path coincides with the actual path. From Fig. 8 it is 
completely clear when low rate range information (active data) is used, the relative range error is reduced. 
By comparing Figs. 8 and 3 it can be seen that at 150th measurement the mean of relative range error for 
the hybrid tracking system is approximately 13 m, and for the BOM tracking system it is approximately 
6000 m. It can be seen that in the hybrid tracking systems the estimation error of the target kinematic 
parameters compared to the BOM tracking systems has been considerably reduced. In all simulations it is 
assumed that the accurate positions of the own ship are known and no noise is considered for position 
parameters of the own ship. 
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Fig. 7.  Actual and estimated path of the own ship and target of the Hybrid Tracking 

 

 
Fig. 8.  Mean of the relative range error 

 
Fig. 9.  STD of the relative range error 
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Fig. 10.  Mean of the Bearing angle error 

 
Section C: 
In section B a hybrid system that combined the low rate range information with high rate bearing angle 
information in order to track the target is introduced. Now, a system that is only equipped with an active 
sensor, using low rate range and bearing angle measurements for tracking the target is proposed. This 
system here is called complete low rate system. Similar to the scenario proposed in section 5, an active 
sensor is considered that reports range and bearing angle measurements every 45 seconds. So the time 
period between consecutive measurements is s 45T  and the total measurement is 10. The mean and 
STD of the estimation error of the target kinematic parameters when the distance between the target and 
the own ship is 40 km are shown in tables 1 to 3 for BOM system, complete low rate system and hybrid 
system respectively.  
 

Table 1. Mean and STD of estimation error of BOM system 
 

Target components Tx  Ty  xTV  yTV  
xTa  

yTa
 

Mean 
960.5 m 859.9 m 2.78 m/s 4.23 m/s 

-
0.034 2s

m  -0.019 2s
m  

STD 1876 m 1677 m 12.17 m/s 12.21 m/s 0.1 2s
m  0.093 2s

m  

 
Table 2. Mean and STD of estimation error of complete low rate system 

 
Target components Tx  Ty  xTV  yTV  

xTa  
yTa

 

Mean 
-6010 m 8856 m -32.22 m/s 44.56 m/s -0.06 2s

m  0.13 2s
m  

STD 2430m 4828 m 11.72 m/s 18.69 m/s 1.017 2s
m  1.02 2s

m  

 
Table 3. Mean and STD of estimation error of hybrid system 

 
Target components Tx  Ty  xTV  yTV  

xTa  
yTa

 

Mean 
-15.7 m -9.03 m -1.52 m/s -0.33 m/s 

-
0.006 2s

m  -0.009 2s
m  

STD 257.5 m 289 m 3.24 m/s 4.71 m/s 0.019 2s
m  0.038 2s

m  
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By comparing the Tables 1 to 3 it is clear that the performances of the hybrid and BOM systems are better 
than that of the complete low rate system. The above results show that by combining high rate bearing 
angle information with low rate range information the estimation errors of the target kinematic parameters 
decrease significantly. 
 

6. SUMMARY AND CONCLUSIONS 
 
This paper consists of two main parts. In the first part, by using the extended state vector in EMPC system 
the state and measurement equations have been developed for the target that moves with a constant 
acceleration. In the second part the BOM system has been applied to the constant acceleration model. 
Computer simulations revealed that in BOM systems when the distance between the own ship and the 
target is low, the estimation accuracy of the target kinematic parameters is good. However, as the distance 
is increased the estimation accuracy of the target kinematic parameters significantly degrades. To solve 
this problem the idea of hybrid measurements has been employed. The corresponding simulations showed 
that by using hybrid measurements the performance of the tracking system considerably increases. 
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APPENDIX A 

 
Extended Modified Polar Coordinate (EMPC) Formulation of the BOM-TMA problem 
In [1] the state and measurement equations have been derived for target moving with constant velocity. 
However, here, the state and measurement equations are derived for a moving target with constant 
acceleration. Consider the geometry depicted in Fig. 12, with the target and own ship confined to the same 
horizontal plane.  
 

 
Fig. A1.  Geometry of the own ship and target 

 
The Cartesian state vector for this two-dimensional configuration is defined by 
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where 
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denote the relative target position and velocity, respectively. A target which moves with a constant 
acceleration is considered. So  taTx  and  taTy

 are constant values. In cartesian coordinate, the dynamic 
equations for a constant acceleration moving system are: 
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where 0t  is the initial time. 
The dynamic equations can be expressed in matrix notation. So we have  
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       000  ,     ,   tttttt uxAx                                                            (A-5)           
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Equation (14) is considered as the Cartesian state equation. Again referring to the geometric configuration 
depicted in Fig. 12 the EMP state vector is defined by 
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where 
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represent the relative range and bearing angle, respectively. In MPC system: 

     ttrtrx sin     

     ttrtry cos                                                              (A-11)                                  

and 

           ttrttrtVx  cos t  sin      

            ttrttrtVy  sin t  cos                                                     (A-12)                         
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         ttattata TTrxT   cos   sin     

         ttattata TTryT   sin  cos                                                     (A-13) 

A one-to-one transformation which maps the EMP state vector into its Cartesian counterpart can now be 
deduced by combining (10) with (17), (20), (21), and (22). It yields   
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Accordingly,  0tx can be computed by letting 0tt   and applying this transformation to the right-hand 
side of (14). After some manipulations this yields 

 
 
 
 
 
 

 

       
       
       
       
       
       





























































03050306

03060305

03030304

03040303

03010302

03020301

04

6

5

4

3

2

1

sin,  cos,
sin,  cos,
sin,  cos,
sin,  cos,
sin,  cos,
sin,  cos,

  1  

tyttstytts
tyttstytts
tyttstytts
tyttstytts
tyttstytts
tyttstytts

ty

tx
tx
tx
tx
tx
tx

                                  (A-15) 

Where 
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by differentiating (18) and (19) with respect to time and then combining the results with (10) and (22) it 
can lead to an inverse transformation which maps Cartesian states into EMP states. This transformation is 
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Substituting (24) into (31) yields   
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By Eq. (32) if the EMP of the target is known at a given time 0t , then the EMP of the target can be 
calculated for 0  tt  .Since target bearing is a component of the EMP state vector, the measurement equation 
for BOM-TMA is expressed in the simple linear form   

          tn   000100  ˆ  tt y                                         (A-24) 

where  tn  is defined in section 3. 
Although the preceding results are expressed in continuous form, discrete time equations of state and 
measurement forms are obtained by considering kTt  ,  Tkt 10  , where ,...3,2,1k  and T  is constant 
sampling period.   


