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Abstract– Brain Computer Interface (BCI) systems still suffer from lack of accuracy in real-time 
applications. This problem emerges from isolated optimization, and in some occasions from 
mismatching of feature extraction and classification stages. To unify optimization of both stages, 
this paper presents a novel scheme to integrate them and simultaneously optimize under a unit 
criterion. The proposed method iteratively estimates both spatio-spectral filters and classifier 
weights under a non-linear form of Fisher criterion. In order to validate the introduced method, 
two standard EEG sets, one containing 118 EEG signals and the other 29, were employed to 
demonstrate its spatial resolution capability. Experimental results on both datasets reveal the 
superiority of the proposed scheme in terms of enhancing the classification performance 
simultaneously with speeding up the optimization process, compared to the conventional methods.           
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1. INTRODUCTION 
 

Brain Computer Interface (BCI) systems are basically designed to translate imagery thoughts into 
meaningful commands in the form of curser movement or activate an electric device [1]. An optimistic 
vision to the future of this field is to enable an individual driving a car or triggering accessible hardware 
just by imagination. BCIs can provide an external communication channel for enabling the patients with 
neurological disorders, such as Amyotrophic Lateral Sclerosis (ALS) or severe Multiple Sclerosis (MS) to 
facilitate their life [2-3]. By developing signal processing techniques, especially in the field of Blind 
Source Separation (BSS), researchers have tried to deploy these schemes in a vast variety of BCI 
applications [4]. The main objective arising from this idea is that source signals are more informative, 
independent, and have better signal to noise ratio (SNR) than the scalp EEG signals. The foundation of 
BSS is established on the fact that the recorded signals (here, scalp EEG channels) are a linear 
combination of statistically uncorrelated sources that are spatially distributed inside the brain. In other 
words, the EEG sources are spatially and spectrally filtered while passing through different layers of head 
such as brain tissue, Cerebral-Spinal Fluid (CSF), skull and scalp. Thus, estimation of EEG sources can be 
carried out by solving an inverse problem, in which the recorded EEG channels should be applied to the 
inverse filters [2, 4]. Common Spatial Pattern (CSP) [5-6] is one of the pioneer methods used to estimate 
EEG sources by a set of spatial filters based on maximizing an energy criterion. To increase the elicited 
sources quality, some studies pass the recorded EEG signals through band-pass filters to remove the 
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redundant frequencies [6-7]. However, the discriminant frequency bands vary from one subject to another 
one. Therefore, it is necessary to optimize the subject-dependent spectral filters, as is done for the spatial 
filters. A well-known method toward satisfying the aforementioned objective is Common Spatio-Spectral 
Patterns (CSSPs) [8], which simultaneously embedded a first-order temporal filter into CSP to equip it 
with spectral features. Although first-order finite impulse response (FIR) filters are stable and have low 
complexity, they include several side-lobes that affect the quality of the selected frequency bands. 
Dornhege et al. [9] later proposed the common sparse spatio-spectral patterns (CSSSPs) algorithm to 
enhance the flexibility of FIR filters. Incidentally, to avoid the over-fitting problem, they incorporated a 
regularization term to the objective function for balancing the tradeoff between the sparsity and accuracy 
[9]. On the other hand, some studies focused on the content of frequency domain revealed by Discrete 
Fourier Transform (DFT) to some extent, where instead of the temporal filters, the frequency filters are 
estimated. In this way, Wu et al. suggested an iterative spatio-spectral pattern learning (ISSPL) algorithm 
[10] in which the spatial and spectral filters are optimized using two different objective functions. The 
main flaw of this approach is the lack of matching between the spectral and spatial filters estimation. In 
other words, due to the lack of unification through optimizing the stages, the resulted accuracy is not still 
convincing. Recently, Christoforou et al. [11] and Nasihatkon et al. [12] proposed two general 
frameworks, where the spatial and spectral filters were simultaneously optimized by a certain target 
function. Nevertheless, both methods suffer considerably from a heavy computational complexity.  

In this research, an integrated scheme is proposed that iteratively estimates both spectral and spatial 
filters. This successive learning leads to the achievement of high classification accuracy along with a 
tolerable computational cost compared to the rival methods.  

The rest of this paper is structured as follows: In Section 2, a purposive survey about the pros and 
cons of the spatial filtering approaches is presented. Then, the proposed iterative spatio-spectral scheme is 
introduced, and the other similar approaches are briefly discussed. The details of the implementation and 
the employed datasets are described in Section 3. Next, the experimental and comparative results are 
presented in Section 4 in which the methods are compared and discussed from different aspects. Finally, 
the paper is concluded in Section 5. 

 
2. METHODS 

 
a) Common Spatial Pattern 

 
The basic idea of standard CSP (termed as Fukunaga and Koontz transform) was first introduced in [5]. 
This spatial scheme was then repeatedly employed to enhance the performance of BCI systems [7]. CSP 
method tries to find linear spatial filters in order to maximize the energy of filtered signals belonging to a 
certain class over summation of other classes. Assume that ݑ is the spatial filter, ܺ(௝) and ݕ௝ represent ݆-th 
trial of multichannel EEGs and its corresponding class label, respectively. A single channel source can be 
found by spatially filtered scalp EEG signals, i.e. ்ܺݑ, and energy of the source can be written as 
 in which Rc is ,	ݑ௖்ܴݑ	ܿ is equal to	Hence, the average of this energy for each specific class .ݑ(்ܺܺ)்ݑ
determined as follows: 

ܴ௖ =
1
݊௖

෍ 	
௡

௝ୀଵ
௬ೕୀ௖

ܺ(௝)ܺ(௝)் ,			ܿ = 1,2, . . .																																																									(1) 

where	݊௖ is the number of trials belonging to the class ܿ and ݊ is the total number of trials. The CSP 
algorithm finds ݑ as a spatial filter such that the following target function is maximized: 
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(ݑ)መ௖ܬ =
்ݑ .ܴ௖ ݑ.
ݑ.ܴ.்ݑ

																																																																																(2) 

where		ܴ = ∑ 	௖ ܴ௖ and ݑ represents the spatial filter. Evidently ܬመ௖ is in the form of a Rayleigh quotient, 
solution to maximization of which is given by the generalized eigenvalue problem: 

ܴ௖ݑ =  (3)																																																																																					ݑܴߣ

In the traditional CSP, the eigenvector corresponding to largest eigenvalue obtained from Eq. (3) is 
the desired spatial vector. In many cases, instead of one eigenvector, several eigenvectors corresponding 
to the largest eigenvalues in Eq. (3) are chosen. Therefore, several spatial filters and consequently, several 
sources are estimated for each movement. 

Since the eigenvectors obtained from Eq. (3) are orthogonal, the sources elicited by these 
eigenvectors are uncorrelated, and to some extent are independent at each given time frame [12-14]. 
Regarding this point, CSP can be considered as a general optimization problem, with the fitness function 
introduced in Eq. (2) and an additional optimization constraint. This limitation should impose on the 
uncorrelated sources, such that for i ≠ j it can be written as a zero correlation constraint in the form 
of	࢏ܝ୘R௖ܝ௝ = 0. Moreover, the optimization needs another constraint to certify the scale of the filters 
remains constant, such as	ܝ்ܝ = 1. 

Thus, the CSP’s algorithm can be rewritten as a new sequential optimization problem with two 
additional constraints.  The spatial filters are estimated by optimizing the objective function mentioned in 
Eq. (2), in a subspace where the obtained sources remain uncorrelated. 

For better conveying of the proposed idea, its procedure is depicted in Fig. 1. As seen, the first 
constraint provides uncorrelated sources, and second ensures the scale of the obtained filters remains 
constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

b) Discriminative common spatial pattern (DCSP) 
 

The standard CSP suffers from the lack of an explicit target function. The main flaw of the energy 
ratio criterion suggested in the CSP is that it is not designed to necessarily best separability among the 
classes. The new expression of CSP introduced in the previous subsection allows us to clarify this 
ambiguity by substitution of the energy ratio with a better discriminant target function, such as the 

௖௞ܝ ← arg max
୳

ܝR௖்ܝ
ܝ	R்ܝ  

Input: 
 A set of training data in the form of ൫ܺ(௝),ݕ௝൯	,				݆ = 1,2, … ,݊. 
 d: number of filters per movement. 
Output: 
 A set of spatial filters uck . 

 
For Movement	ܿ ← 1  do ܯ…
       For ݇ ← 1 …݀ do 

// obtain the k-th filter of the movement c as: 

 
subject to:  

1. ௟ܝR௖்ܝ = 0,											݈ = 1, … , ݇ − 1 
2. ܝ்ܝ = 1 

 
      End 
End 

Fig. 1. CSP as a sequential filter estimation 
algorithm 
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Fisher’s discriminant criterion. Consider e(.) denotes the energy operand, then the log-energy of the 
sources (or extracted features)  denoted by ௝݂ 	can be formulated as: 

௝݂ = log ቀ	e൫܆்ܝ(௝)൯ቁ																																																																							(4) 

Therefore, the Fisher’s target function can be written as: 

J௖(ܝ) = (ఓ೎ିఓ೎෤)మ

ఙ೎మାఙ೎෤
మ 																																																																												(5) 

where ߤ௖ and ߪ௖ଶ are mean and variance of the ௝݂-s belonging to the class	ܿ, and 	ߤ௖̃	 and 	ߪ௖̃ଶ	 are that of the 
other classes. 

In order to keep the obtained sources uncorrelated to each other, similar to CSP, the zero correlation 
constraint is used in optimizing the DCSP’s target function. In other words, by optimizing the function 
introduced in Eq. (5), spatial filters are determined to preserve un-correlated property among the sources. 
Hence, discriminative CSP (DCSP) [12] algorithm can be written as shown in Fig. 2. 

The Fisher’s criterion tries to optimize the spatial filters by maximizing between classes scattering 
and minimizing within classes scattering. However, the CSP’s target function just focuses on between 
classes separating. Therefore, it is expected that DCSP will achieve more discriminant sources rather the 
standard CSP. 

Since the Fisher’s discriminant criterion is optimal for the classes with Gaussian distribution, for non-
Gaussian features, it is necessary to re-distribute the scattered features to the normal one by a suitable 
transform. Applying the Jarque-Bera normality test [21] to the EEG features, especially in the BCI 
applications, the distribution of log-energy of features is nearer to the normal distribution rather than that 
of energy-based features [12]. Therefore, log-energy provides discriminant features with normal 
distribution that is an optimal case for the Fisher criteria. Moreover, experimental results were led to a 

௖௞ܝ ← arg max
୳

ቊJ௖(ܝ) =
௖ߤ) − ௖̃)ଶߤ

௖ଶߪ + ௖̃ଶߪ
ቋ 

௝݂ = log ቀ	e൫܆்ܝ(௝)൯ቁ 

Input: 
 A set of training data in the form of ൫ܺ(௝),ݕ௝൯	,				݆ = 1,2, … ,݊. 
 d: number of filters per movement. 
Output: 
 A set of spatial filters uck . 

 
For Movement	ܿ ← 1  do ܯ…
     For ݇ ← 1 …݀ do 

// obtain the k-th filter of the movement c as: 

in which 

௖ߤ = mean൛ ௝݂	|ݕ௝ ∈ ܿ	ൟ and ߤ௖̃ = mean൛ ௝݂ ௝ݕ|	 ∉ ܿ	ൟ 
௖ଶߪ = variance	 ௝݂ ௝ݕ|	 ∈ ܿ} and ߪ௖̃ଶ = variance	{ ௝݂ ௝ݕ|	 ∉ ܿ} 

 
subject to:  

3. ௟ܝR௖்ܝ = 0,											݈ = 1, … , ݇ − 1 
4. ܝ்ܝ = 1 

 
     End 
End 

Fig. 2. DCSP algorithm 
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considerable improvement in terms of accuracy and stability in DCSP compared to the standard version of 
CSP [12]. 

 
c) Discriminative (and iterative) spatio-spectral pattern learning (DSSPL) 

 
In this section, an iterative procedure is proposed which merges learning of discriminant feature 

extraction and classifier stages simultaneous to the estimation of the spatio-spectral filters, all in one 
optimization package. The proposed algorithm has two major steps that iteratively follow each other as 
explained in the forthcoming stages: 

 
1. Spatial filters estimation: 
In this step, ݀ spatial filters are estimated by applying the DCSP to the spectrally pre-filtered signals. At 
the beginning, the multichannel EEGs are projected to the frequency domain using DFT, and then passing 
through ݀ initial spectral filters. Assume that ܺ(௝) is the signal matrix of the j-th trial, in which the 
recorded EEG signal of each specific channel is arranged in the corresponding row. Let	۴ = ࣞℱ࣮{܆}, L 
be the number of frequency bins, and ۴ଵ,۴ଶ , … ,۴௅are arranged in the columns of	۴. Assume that the DFT 
coefficients of the initialized spectral filter are denoted by	߶ଵ ,߶ଶ, … ,߶௅, and ઴ is the diagonal matrix of 
these coefficients, i.e. ઴ = diag(߶ଵ,߶ଶ , … ,߶௅). Thus, the DFT of the multichannel EEGs filtered by the 
k-th spectral filter can be termed as 	۴઴௞(݇ = 1 … ݀). Hence, the energy of signal ۴ filtered by k-th spatio-
spectral filter pair of	઴௞ 	and	ܝ௞  is determined as follows: 

e൫ܝ௞்۴઴௞൯ = ௞்൫۴Φ௞Φ௞ܝ
ு۴ு൯ܝ௞ 

=  ௞ܝ|઴௞|ଶ۴ு)	௞்(۴ܝ

= ௞்ܝ 	(෍	|߶௞,௜|ଶ۴௜۴௜ு
௅

௜ୀଵ

௞ܝ	( 																																																															(6) 

This energy of the spatio-spectrally filtered signals should be considered as	 ௝݂ 	in Eq. (5), and then 
the	݀ spatial filters are estimated using DCSP. However, the DCSP’s average zero correlation constraint 
must be corrected to support the initial spectral filters in a linear form. To address this objective, the 
following zero correlation is proposed: 

෍ 	
௡

௝ୀଵ
௬ೕୀ௖

௞ିଵܝ௞்۴(௝)઴௞઴௞ିଵ۴(௝)ܝ = 0																																																		(7) 

In other words, each estimated source should be uncorrelated to the former obtained sources, while each 
spatial filter has a unique conjunction spectral filter. Note that the constraint proposed in Eq. (7) has a 
linear form with respect to	ܝ௞. 

 
2. Learning spectral filters jointly with the classifier: 
Due to the linearity of spatial and spectral filtering procedures, both filters can be iteratively trained, such 
that a spectral iteration is followed by a spatial one and this procedure successively continues until the 
termination criterion is met. That is to say, contrary to the first step, we can first apply the already 
optimized spatial filters to the raw data, and then update the spectral filters based on the resultant spatially 
filtered data. 

In Eq. (6), energy of the spatio-spectrally filtered signal was expressed as a term of spatial and 
spectral filters. We can denote |߶௞,௜|ଶ by	ߚ௞,௜ in Eq. (6) and then:  

௞ߚ;۴)݂ (௞ܝ, 		= 		e(ܝ௞்۴઴௞) 
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= 	௞்(෍ܝ
௅

௜ୀଵ

௞ܝ(௞,௜۴௜۴௜ுߚ = ෍	
௅

௜ୀଵ

௞்۴௜۴௜ܝ௞,௜ߚ
ுܝ௞ 

= ∑ 	௅
௜ୀଵ ௞,௜ߚ . ௞,௜ݖ ݇	ݎ݋݂											, = 1 …݀																																																									(8) 

where ݂(۴;ߚ௞ ௞ݖ ௞) is the feature obtained by the k-th filter pair, andܝ, ,௜ 	is:  

௞,௜ݖ = ௞்۴௜۴௜ܝ
ுܝ௞ 																																																																												(9) 

The feature vector 	܎	 is then formed by all	݇ = 1 …݀	features: 

܎ = (ଵܝ,ଵߚ;۴)݂] ௗߚ;۴)݂… ௗ)]ுܝ, 																																																							(10)	 

The resultant vector ܎ needs to be classified by a suitable classifier. A linear classifier is often 
employed for its good generalization ability and to avoid the potential over-fitting problem, while 
nonlinear classifiers are a potential tent to be over-fitted [4]. 

Several linear classifiers are suggested to handle EEG features including Fisher Linear Discriminant 
Analysis (FLDA), Linear Neural Network, Logistic Regression (LR), and Support Vector Machines 
(SVMs) [15]. Since the Fisher’s discriminant criterion was used in optimizing the spatial filters, to 
establish a better match between the spatio-spectral optimization and the classifier optimizer, FLDA 
classifier is chosen for preserving the unity of objective function throughout the whole optimization 
process. For every linear classifier, a set of ݓ weights and 	ܾ bias should be estimated such that: 

(܎)ܱ = ுܟ . ܎ + ܾ 

Considering Eqs. (8) and (10) results in: 

(܎)ܱ = ுܟ . (ଵܝ,ଵߚ;۴)݂] … ௗߚ;۴)݂ ௗ)]ுܝ, + ܾ 

= ෍	
ௗ

௞ୀଵ

෍	
௅

௜ୀଵ

௞ݓ ௞,௜ߚ. ௞,௜ݖ		.	 + ܾ																																																																									(11) 

where ܱ is a one dimensional scalar value and in the case of two-class problem, O(܎)	is passed through a 
sign function and ܎ is classified according to the sign of ܱ. Let us denote: 

෥௞,௜ݓ = ௞ݓ ௞,௜ߚ. 																																																																														(12) 

Then Eq. (11) can be rewritten as: 

(܎)ܱ = ∑ 	ௗ
௞ୀଵ ∑ 	௅

௜ୀଵ ෥௞,௜ݓ ௞,௜ݖ		.	 + ܾ = ෥ܟ . ܢ + ܾ																																											(13) 

Where 

෥ܟ = ቂݓ෥ଵ
(ଵ) ෥ଵݓ…

(௅) ෥ௗݓ…
(ଵ) ෥ௗݓ…

(௅)ቃ 

ܢ = ቂݖଵ
(ଵ) … ଵݖ

(௅) … ௗݖ
(ଵ) … ௗݖ

(௅)ቃ																																																											(14) 

Afterwards, the FLDA classifier tries to find the 	ݓ෥௞,௜ weights such that the following optimization 
function be maximized: 

(෥ܟ)௖ܬ = (ఓ೎ିఓ೎෤)మ

ఙ೎మାఙ೎෤
మ 																																																																						(15) 

௖ߤ 	and	ߪ௖ଶ are mean and variance of the ௝ܱ-s belonging to the class ܿ, and ߤ௖̃ and ߪ௖̃ଶ are that of the 
other classes. Note that ܬ௖(ܟ෥)	is just a function of weights ݓ෥  and is independent of ܾ (the constant value 
does not affect the variance and is eliminated from numerator by subtraction). Thus, we can set ܾ	to every 
arbitrary value (here ܾ = 0 for the simplicity) and estimate ݓ෥	by maximizing the ܬ௖(ܟ෥) in Eq. (15). 
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When the classifier weights are updated, we can say one iteration is finished and the ݀ spatial filters 
and ܟ෥  are obtained. The initial spectral filters for the subsequent iteration can be obtained from ܟ෥  with 
regard to Eq. (12). Since the scale and the sign of spectral coefficients have no significance, we can simply 
set the spectral filters to be normalized	ܟ෥ : 

௞ࢼ =
෥௞ݓ]

(ଵ) ෥௞ݓ…
(௅)]

෥௞ݓ]		||
(ଵ) ෥௞ݓ…

(௅)]		||ଶ
																																																												(16) 

To avoid over-fitting problem, a Gaussian smoothing window is applied to the obtained filters by Eq. 
(16). In fact, the smoothing process acts as a generalization term. Length of the window can be found by 
cross validation (e.g. 20/ܮ or	30/ܮ). 

At the first iteration, the initial spectral filters can be set to cover a broad frequency range of EEGs, 
e.g., 7-30 Hz. As mentioned previously, this iterative procedure repeats till the termination criterion is 
met. This criterion can be chosen as the relative change between two consecutive iterations is less than a 
preset threshold, or the number of iterations exceeds than a predefined threshold.  

All that remains is to adjust the decision bias	ܾ, i.e., the point along the one-dimensional subspace 
separating the projected features of two classes. Finding this value is brought up after termination of filters 
learning. The value of ܾ can be chosen to minimize the training error, or can be estimated using a priori 
statistical assumption [15-16]. Due to diminishing the computational cost, the second way is chosen. By 
assuming the normal distribution for classifier outputs of both classes, the following structure is suggested 
in this study to estimate the bias value of 	ܾ: 
௖ߤ				݂݅ ≥ ௖̃ߤ ∶ 

								ܾ = 	
௖ߤ) − (௖ߪ + ௖̃ߤ) + (௖̃ߪ

2
							 

else: 

ܾ =
௖̃ߤ) − (௖̃ߪ + ௖ߤ) + (௖ߪ

2
																																																														(17) 

The suggested threshold considers the deviations of means and standard deviations of the two classes. 
In other words, statistical characteristics of the train set for estimation of b is employed.  

To show concatenated parts of this algorithm together, the structure of this algorithm is illustrated in 
Fig. 3, which iteratively finds the spatio-spectral filters in conjunction with the classifier weights. After 
estimating the	ݓ෥  and	ܾ, the training phase is finished. For the test phase, ܢ vectors and ܱ values should be 
calculated for each EEG signal using Eqs. (9), (13) and (14), and then classification is carried out 
according to the	ܱ’s sign. 

 
d) Comparison with common spatio-spectral pattern (CSSP) 

 
CSSP [8] is one of the widely used spatio-spectral filter estimation methods in BCI applications. This 

method assumes that frequency distortion of EEG sources in passing through head tissues can be modeled 
by a second order FIR filtering. In turn, this filtering is equal to adding the signal by its weighted delayed 
version. Thus, to obtain the source signals, we can filter the scalp signals by a set of spatial filters on the 
EEG signals in addition to its delayed version. If we denote the j-th source by	ݖ௝ , then: 

௝ݖ = ௝ܺ(଴)ݑ +  (18)																																																																					ఛܺ௝ߜ(ఛ)ݑ	

where ݑ(଴) and ݑ(ఛ) are the spatial filters corresponding to the signal and the delayed signal, and ߜఛ is an 
operator which postpones the starting point of the signal for ߬ seconds, i.e. 

ఛܺ(௧)ߜ = ܺ(௧ିఛ) 
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઴ = ઴0 

௖௞ܝ ← arg max
୳

ቊJ௖(ܝ) =
௖ߤ) − ௖̃)ଶߤ

௖ଶߪ + ௖̃ଶߪ
ቋ 

݂(۴;઴௞,ܝ௞) = ௞்ܝ 	(෍ |߶௞,௜|ଶ۴௜۴௜ு
௅

௜ୀଵ

 ௞ܝ	(

෥ܟ ← arg max
୳

ቊJ௖(ܟ෥) =
௖ߤ) − ௖̃)ଶߤ

௖ଶߪ + ௖̃ଶߪ
ቋ 

ܱ = ෥ܟ . ܢ + ܾ		 

(઴௞)ଶ =
෥௞ݓ]

(ଵ) ෥௞ݓ…
(௅)]

෥௞ݓ]		||
(ଵ) ෥௞ݓ…

(௅)]		||ଶ
 

Input: 
 A set of training data in the form of	൫ܺ(௝),ݕ௝൯	,				݆ = 1,2, … , ݊. 
 d: number of spatio-spectral filter-pairs per movement. 
 A set of initial spectral filters ઴0௞,			݇ = 1 …݀. 
Output: 
 A set of the spatio-spectral filters	(઴௖௞ ݇					,	(௖௞ܝ, = 1 …݀. 
 A set of classifier weights ܟ෥  and ܾ. 

----------------------------------------------------------------------------------------------------------- 
For ݆ = 1,2, … , ݊ 
(௝)ܨ  =  ൛ܺ(௝)ൟܶܨܦ
End 

For Movement	ܿ ← 1  do ܯ…
Repeat 

For   ݇ ← 1 …݀do 
// obtain the k-th spatial filter as: 

in which 

௖ߤ = mean൛݂(௝)	|ݕ௝ ∈ ܿ	ൟ and  ߤ௖̃ = mean൛݂(௝)	|ݕ௝ ∉ ܿ	ൟ 
௖ଶߪ = variance	{݂(௝)	|ݕ௝ ∈ ܿ} and  ߪ௖̃ଶ = variance	{݂(௝)	|ݕ௝ ∉ ܿ} 

subject to:  
1. ∑௡

௝ୀଵ
௬ೕୀ௖

௞ିଵܝ௞்۴(௝)઴௞઴௞ିଵ۴(௝)ܝ = 0		,											݈ = 1, … ,݇ − 1 

2. ܝ்ܝ = 1 
End 

------------------------------------------------------------------------------------ 
Calculate ݖ௞(௜) = ௞்۴௜۴௜ܝ

ுܝ௞,							݅ = 1  ܮ…
Calculate ܢ = ଵݖൣ

(ଵ) … ଵݖ
(௅) 		… ௗݖ		

(ଵ) … ௗݖ
(௅)൧ 

// obtain the classifier weights as: 

in which: 

௖ߤ = mean൛ܱ(௝)	|ݕ௝ ∈ ܿ	ൟ and ߤ௖̃ = mean൛ܱ(௝)	|ݕ௝ ∉ ܿ	ൟ 
௖ଶߪ = variance	{ܱ(௝)	|ݕ௝ ∈ ܿ} and ߪ௖̃ଶ = variance	{ܱ(௝)	|ݕ௝ ∉ ܿ} 
// obtain the initial spectral filters for next iteration as: 

------------------------------------------------------------------------------------ 
Until termination criterion is satisfied 
Obtain the value of ܾ from (16). 

End 

Fig. 3. DSSPL algorithm 
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We can rewrite the Eq. (18) as follows: 

௝ݖ = 	 (଴)ݑ] [(ఛ)ݑ ൤ ܺ
௝

ఛܺ௝ߜ
൨ = ොݑ ෠ܺ௝																																																										(19) 

CSSP tries to find the ݑො vector using the CSP’s target function, and in the same way solve it by the 
eigenvalue decomposition. In this regard, finding a set of  ݑො spatial filters covers estimation of the joint 
spatio-spectral filters. The value of ߬	can be obtained by line search leading to proper classification 
accuracy. 

CSSP is a simple, fast and efficient procedure, but it still suffers from the mentioned problematic 
fitness function of CSP. In addition, CSSP uses a simple FIR spectral filter, which cannot cover all of the 
frequency distortions. 

The elicited features by this method are categorized in a separate step. The employed classifier 
weights may be optimized in a different condition from the CSP’s criterion. The separate optimization can 
decrease the procedure’s performance. 

In contrast, the proposed method (DSSPL) has a more efficient merit function (as described in II-B), 
uses comprehensive spectral filters, and a more coordinated integrated classifier. 

 
e) Comparison with iterative spatio-spectarl pattern learning (ISSPL) 

 
ISSPL [10] uses an iterative scheme to optimize spatial filters, spectral filters and classifier weights. 

In the first step, the spatial filters are obtained for each class using traditional CSP, such that the energy 
ratio of the corresponding class source over other classes is maximized. For example, for a two-class 
problem, we have to obtain two different sets of spatial filters and two sets of sources consequently. Next, 
energy of the obtained sources is fed to a SVM classifier. If the energy of both classes is equally 
maximized (as is done in ISSPL) the classifier cannot separate them. To address this problem, ISSPL tries 
to optimize the SVM classifier weights with positive sign for the first class and negative sign for another 
one. Then, for each class the spectral filters are obtained from average absolute value of the classifier 
weights (similar to Eq. (16)). These filters are used as initial spectral filters in the next iteration. The 
algorithm of ISSPL is described briefly in Fig. 4. 

Although both ISSPL and DSSPL methods use an iterative algorithm, there are many essential 
differences between them. At first, the ISSPL uses traditional CSP in spatial filter estimation, which is 
very sensitive to outliers and noisy samples, while the DSSPL uses an improved version of CSP (DCSP).  

In addition, DSSPL uses a fixed criterion and target function to optimize spatial filters, spectral filters 
and classifier weights. In contrast, ISSPL optimizes these three items under different criterions (such as 
CSP and SVM target function). Because of iterative structure in both of the methods, these three steps 
(optimizing spatial filters, spectral filters and classifier weights) are executed successively and are not 
independent. Thus, the mentioned unity in DSSPL can improve the final classification rate, e.g., in ISSPL, 
the CSP tries to optimize the spatial filters and remove the irrelevant components. However, in the next 
step, optimizing the spectral filters and classifier weights using the SVM criterion leads to the removal of 
other irrelevant components which are different from those that were removed by CSP in the previous 
step. This inconsistency can be continued in the next iterations and consequently causes lower 
performance in ISSPL. 

Another difference emerges from the computational cost point of view. Although the ISSPL uses a 
simple CSP merit function to optimize the spatial filters, it has to estimate more spatio-spectral filters than 
ISSPL. In other words, for a two-class problem, ISSPL estimates two sets of spatio-spectral filters and 
classifier weights, while in DSSPL it diminishes to one set, which leads to a lower run time in practice. 

 



D. Fattahi and R. Boostani 
 

IJST, Transactions of Electrical Engineering, Volume 36, Number E2                                                                   December 2012 

156 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
     

f) Comparison with second order bilinear discriminant analysis (SOBDA) 
 

Suppose that ܺ(௝) and ݕ௝ ∈ [−1,1] represent j-th trial of multichannel EEGs and its corresponding 
class label, respectively. SOBDA [11] defines the following discriminant function: 

݂(ܺ; (ߠ =  (ࢂ்ܺࢁ)݁ܿܽݎܶ	ܥ

+(1 − (࡭்்ܺ࡮࡮்ܺ࡭Λ)݁ܿܽݎܶ(ܥ +  (20)																																																					0ݓ

where	ࢁ and ࢂ are spatial and spectral filters for the linear term, ࡭ and	࡮ are spatial and spectral filters in 
the quadratic term, Λ is diagonal matrix of the weights corresponding to each filter-pair and each class, w0 
is the bias, and C is a regularization term between the mentioned two major parts. It results in positive and 
negative values for trials with yj= +1 and yj= −1, respectively. 

The discriminant function in Eq. (20) has two major parts; first, a linear term which contains 
amplitude of the signals, and second, a quadratic term which contains power of the signals. In other words, 
the linear term captures phase-locked event-related potentials and synchronous discriminant features in the 
EEG signal, while the quadratic term elicite asynchronous and second-order statistics of the signal. 

If we integrate all of the SOBDA’s parameters in one vector denoted as	ߠ = ,Λ,࡮,࡭,ࢂ,ࢁ} w0}, the 
SOBDA tries to optimize the ߠ using Logistic Regression (LR) criteria. The parameter of this curve is 
estimated by the following likelihood function: 

(ߠ)ܮ = −∑ log൫1 + ݁ି௬ೕ	௙(௑;ఏ)൯௡
௝ୀଵ 																																																									(21) 

Where n is number of trials, yj is the label of j-th sample, L(Ө) is the regression function, and f(X,Ө) 
is the discriminant function described in Eq. (20). 

The SOBDA uses both first and second order components to estimate the spatio-spectral filters with 
the objective of achieving better classification accuracy. However, it suffers from some drawbacks, which 

(௝)ܨ =  ൛ܺ(௝)ൟܶܨܦ

઴ = ઴0 

Input: 
 A set of training data in the form of ൫ܺ(௝),ݕ௝൯	,				݆ = 1,2, … ,݊. 
 d: number of spatio-spectral filter-pairs per movement. 
 A set of initial spectral filters ઴0௞,			݇ = 1 …݀. 
Output: 
 A set of the spatio-spectral filters	(઴௖௞ ݇					,	(௖௞ܝ, = 1 …݀. 
 A set of classifier weights ܟ෥  and	ܾ. 

----------------------------------------------------------------------------------------------------------- 
For݆ = 1,2, … , ݊ 

End 

For Movement ܿ ← 1  do ܯ…
Repeat 

For   ݇ ← 1 …݀ do 
Obtain ܝ௖௞ and ܝ௖̃௞ using CSP algorithm 
Obtain the classifier weights ܟ෥  and ܾ by optimizing the SVM criteria. 
Obtain the spectral filters ઴௖௞ and ઴௖̃௞ from average of ܟ෥-s. 
End 

Until termination criterion is satisfied 
End 
 
 

Fig. 4. ISSPL algorithm 
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causes high computational complexity. The first drawback comes back to its optimization algorithm, 
which is not iterative, and it is difficult to optimize four sets of filters together. This problem would be 
more critical if the number of sources increase. In addition, in the quadratic part of Eq. (20), the spatial 
and spectral filters are obtained per each class, hence, two different sets of filters for a two-class problem 
should be estimated. Thus, it can be said that SOBDA is a time consuming and complex algorithm 
because it has to estimate a large number of filters. 

 
3. MATERIALS AND IMPLEMENTATION CRITERIA 

 
a) Implementation details 

 
To evaluate how the proposed algorithm acts effectively, four considerable schemes in spatial and spatio-
spectral filtering field including CSP [7], CSSP [8], ISSPL [10] and SOBDA [11], were implemented and 
all of them were applied to the two different BCI datasets with different spatial resolution.  

In all of the experiments, EEG signals were first filtered between 7-30 Hz in the preprocessing stage 
or the initial spectral filters were selected such that the frequency interval of 7-30 Hz was equally covered. 
The number of spatial or spatio-spectral filters (depending on the method) ranged from 1 to 5, and for each 
method, that number of filters providing the best classification accuracy is chosen. To fairly compare the 
methods in terms of accuracy and time processing, the same optimization algorithm for all of the 
implementations is chosen: a specific non-linear optimization method which uses interior-point algorithm 
with a combination of line search and trust region steps [17-18], [23]. 

In CSP and CSSP methods the extracted features are classified by SVM and FLD classifiers, while 
the three other methods (ISSPL, SOBDA and DSSPL) are naturally equipped with their own classifier. 
Among the compared methods, just ISSPL and the proposed method (DSSPL) benefit from an iterative 
learning scheme. Maximum number of iterations for both methods was set to 3. In the SOBDA 
implementation, all of the free parameters were found by line search and cross validation, according to 
what was suggested in the original paper [11].  

 
b) Datasets 

 
Two standard EEG datasets with different spatial resolution are employed to assess the proposed 

method compared to the mentioned competitive approaches. The datasets include Graz BCI [19] and IVa 
(BCI Competition III) [23] that are separately described as follows: 

 
Graz BCI Dataset: Three normal subjects (S1, S2, and S3) whose age ranged between 25 and 35, were 
trained to concentrate on five mental tasks including; movement imagination of left hand, right hand, 
tongue, foot along with an arithmetic task. Each subject was required to perform these imaginations for 
3.5 s in an 8-second paradigm. The signals are recorded from 29 gold electrodes according to the 10-20 
standard recording system. The signals first were filtered between 0.5 to 30 Hz and sampled at 256 Hz 
[19]. In this study, only two-classes (out of five classes) are investigated including left and right imagery 
movements. After removing trials with a high level of artifact noises, totally 228, 223 and 188 trials 
remained for S1, S2 and S3 subjects, respectively. These trials almost equally belonged to left and right 
hand imagery movements. 

 
Dataset IVa in BCI Competition III: The EEG data were recorded from five healthy subjects labeled as 
“aa”, “al”, “av”, “aw”, and “ay”. According to the international 10-20 recording system, 118 channels 
were placed on their scalp. Signals were down sampled to 100 Hz and filtered between 0.5-30 Hz. During 
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each trial, subjects were required to perform either of two motor imagery tasks for 3.5 s: right-hand and 
right-foot imagery movements. The total of 140 trials were collected for each subject and each task [23]. 

 
4. RESULTS 

 
a) Classification rate 

 
Since we collect enough number of samples, ten times ten fold cross validation is used to determine the 
classification accuracy. The accuracy of applying DSSPL and the other four rival methods is shown in 
Tables1 and 2 for Graz BCI and BCI competition datasets, respectively. The contents of the tables are 
arranged as mean ± standard deviation of the classification accuracy. As mentioned before, each method 
selects a number of filters (ranging from 1 to 5), leading to its highest performance. 
 

Table 1. Classification results of applying csp, cssp, isspl, sobda and dsspl 
 algorithms to eeg signals of graz bci dataset 

 
Subjects CSP+SVM CSP+FLD CSSP+SVM CSSP+FLD ISSPL SOBDA DSSPL 

S1 71.4±8.1 73.1±6.4 79.7±7.0 78.3±6.6 84.5±5.9 88.6±5.4 89.5±5.0 
S2 81.2±7.0 80.1±5.5 89.6±5.2 88.7±5.1 90.0±5.0 92.6±4.8 90.2±4.1 
S3 72.1±7.5 72.2±7.1 77.9±7.9 78.1±7.0 83.2±6.0 87.3±5.8 88.3±5.3 

 
Table 2. Classification results of applying csp, cssp, isspl, sobda and dsspl algorithms to bci competition iii dataset 
 

Subjects CSP+SVM CSP+FLD CSSP+SVM CSSP+FLD ISSPL SOBDA DSSPL 
aa 72.3±5.0 72.7±5.5 74.0±4.8 74.4±5.0 88.2±4.0 92.9±3.9 93.7±3.5 
al 89.6±4.1 89.2±3.5 90.6±2.1 91.0±2.0 96.2±2.2 99.0±0.2 97.8±0.6 
av 74.9±7.1 75.3±6.0 73.8±5.8 74.1±6.0 77.0±5.5 78.1±5.6 81.6±3.6 
aw 86.3±5.2 87.0±5.5 91.3±4.0 90.2±4.4 93.6±4.0 95.2±3.3 95.0±2.5 
ay 90.5±4.8 88.1±3.9 89.4±5.1 88.9±5.5 93.0±3.2 94.9±3.0 94.2±3.4 

 
As we can see, the obtained results by the proposed method are highly superior to those of standard 

CSP and CSSP. This drastic difference is resulted by considering more spectral components that involve 
more discriminant frequency intervals in the decision making process. Moreover, DSSPL acts more 
precisely than ISSPL because it considers the objective function of DCSP instead of CSP, in addition to 
unifying the whole optimization steps under a certain criterion. 

The SOBDA uses both first and second order components to estimate the spatio-spectral filters, 
which leads to achieving high classification accuracy. Accuracy of DSSPL and SOBDA are almost 
equivalent; however, DSSPL seems to be more proper in hard cases, while SOBDA is superior in good 
cases. Our definition of the good cases is those subjects who provide separable features and accordingly 
result in a higher classification rate in all of the methods (S2, al, aw, ay). In contrast, hard cases refer to 
those who have lower classification rate (S1, S3, aa, av). The produced results show DSSPL provides 
lower standard deviation around the mean classification accuracy. Consequently, it can be claimed that 
DSSPL is more robust and stable compared to SOBDA. 

Another advantage of DSSPL that improves its accuracy originates from average zero correlation 
constraint applied to estimating the spatio-spectral filters. This constraint leads to minimization of the 
mutual information among the elicited features. Most of the other methods use this constraint just for 
estimating the spatial filters. 
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b) Spatio-spectral filters 
 

Unity of the optimization function in the proposed method is one of its advantages compared to the 
other similar approaches such as ISSPL. For further explanation, the updating procedure of first spatial 
and the corresponding spectral filters estimated from the subject S3 are shown in Fig. 5. As seen, column 
(a) shows the spatio-spectral filters obtained after each of the three iterations for DSSPL. In addition, for 
ISSPL these filters are shown in columns (b) and (c) for the left and right hand imagery movements, 
respectively. 

 

 
Fig. 5. Updating procedure of spatial and corresponding spectral filters for DSSPL in 

column (a) and for ISSPL in columns (b) and (c) 
 
It is obvious that spatial and spectral patterns are entirely different for these two methods which 

originated from applying two different optimization functions in filter estimation stage. DSSPL tries to 
achieve discriminative spatial and frequency bands, while ISSPL aims to find spatio-spectral patterns 
providing higher energy ratio for each class, separately. 

In DSSPL, after three iterations, spatial filters tend to focus on parietal lobe of the head. It confirms 
the physiological assumption that says discriminative information of movement imageries arise from this 
region of head [20]. However, in ISSPL, no clear pattern can be seen in the obtained spatial filters at each 
epoch. This deficiency comes back to utilizing different objective functions in the training phase of spatial 
and spectral filters. 

 
c) Computational cost 

 
All of the mentioned algorithms were implemented in MATLAB (R2010a version) on Windows 7 

using “Intel(R) Core(TM)2 Duo T9300@ 2.50GHz 2.5GHz - 3.00GB RAM” platform. Approximation of 
processing time for estimating 5 filters (or 5 filter-pairs) in all of the methods is summarized in Table 3. In 
this study, subject aa from BCI Competition III dataset was chosen, while just 1-time 1-fold of the 10 
times 10 fold cross validation process was considered. 

Although the processing time is not a precise gauge for assessment of an algorithm complexity, some 
studies use it as a rough indicator instead of the computational order. This is due to the fact that the 
solution cannot be expressed as a closed form for some methods such as the proposed one in this study; 
therefore, the only way to compare the algorithms in terms of complexity is the calculation of their 
running time. 
 

(a) (b) (c) 
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Table 3. Processing time of applying CSP, CSSP, ISSPL, SOBDA and DSSPL  
              algorithms to the subject AA in BCI competition III dataset 

 
Method 

CSP+SVM       

CSP+FLD CSSP+SVM CSSP+FLD ISSPL SOBDA DSSPL 

Processing Time less than 1 min less than 2 min 14 min 21 min 8 min 
 

In CSP, spectral filtering is applied as a preprocessing step, and CSSP algorithm needs to estimate a 
few parameters in determining its spectral filters. Thus, as expected and shown in Table 3, they are 
executed in a short time. In contrast, in the other three methods, spectral filters are optimized to provide a 
high resolution, which causes high computational cost accordingly. 

In the ISSPL and SOBDA, it is necessary to estimate the spatial and spectral filter matrices two times 
(one for each class), which is the main reason for the long running time. ISSPL tries to estimate these 
filters in an iterative procedure; spatial filters using the simple CSP, and spectral filters using a 
parameterized version of SVM. This trick causes less executing time than SOBDA, but regarding lack of a 
direct relation in estimation of spectral and spatial filters (difference of optimization criteria), the 
classification accuracy is not convincing in ISSPL [10, 11] as shown in Tables 1 and 2. 

DSSPL tries to estimate spatial and spectral filters one time for both classes (not for each class 
separately as in ISSPL or SOBDA). This simplicity, in addition to merging of feature extraction and 
classification in an iterative manner, causes less processing time than that of ISSPL and SOBDA. 
Moreover, the same optimization criterion which is based on maximum discrimination is used for all steps 
of the algorithm making it more accurate than ISSPL. 

 
5. CONCLUSION 

 
In this research, an iterative spatio-spectral algorithm is introduced using a combination of discriminative 
CSP (DCSP) and a specific parameterized version of FLD classifier. In the proposed method (DSSPL), 
spatial filters are estimated using DCSP, and then spectral filters and FLDA classifier weights are adjusted 
simultaneously. Using a fixed criterion in all optimizations leads to an integrated and coordinated scheme. 
In addition, incorporating an independency constraint in DSSPL leads to minimizing the mutual 
information among the features and consequently proving higher classification rate. Moreover, by using 
Fisher’s discriminant criterion, just one set of spatio-spectral filters is employed for classification of the 
two-class signals. However, in most of the other similar methods it is necessary to find a set of filters for 
each class.  

These properties cause efficiency of our method in high accuracy and low running time. For 
evaluation, the proposed method and four other similar schemes were implemented over the two highly 
cited BCI datasets. Experimental results show that considering computational cost and classification rate, 
our algorithm has higher performance overall. 

For further work, other linear or non-linear discriminant criterions can be parameterized and used in 
the feature extraction and classification formulation. Moreover, the effect of using kernel functions in such 
approaches (spatio-spectral filtering) can be examined and discussed. In addition, utilization of spatio-
spectral filtering for source localization can be the optimistic horizon of this approach. 
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