Position control of three-phase induction motors using sliding mode control strategy and its implementation



Speed control of induction motors has been the focus of attention in previous last decades, but controlling the position of rotor of induction motors has received little attention. In induction motors, the rotor voltage is induced by a stator field, therefore producing static torque and controlling the position of the rotor is quite difficult. Vector control has been proposed for this problem, however it requires huge calculations and an exact model of the system. In this paper a very simplified model is used and sliding control strategy has been proposed to overcome the shortcomings of the previous model. This approach requires fewer calculations and does not need an exact model. Nevertheless, the simulation results show a very good performance compared with other approaches. To show the strength of the control strategy, it has been implemented on a 2.2 kw three-phase induction motor.